DATI GEOTECNICI

	G	EŲ.	TEI	CHI	[] [5]	FALAZZI	Sc	ND.	GG	10 1	• 5	i			1	
	COMMII					CIGRI VENTURINA LOCALITA:: DEPOSITO A	DAIL	: 1	MGG	10 9		0.0		P.C.		_
			Seals 437.	Strati- grafia	Falds	DESCRIZIONE TERRENI ATTRAVE		Guate s.	F1/01/1000	Pocket Pen	Cafe fest in	- 1		1000	CAR.C	Character
110	161 .5		1	// - //.		timo-sabbiuse argilloso brus	10		a, -	4			12.5	-gradi	19/220	1
100	3,2		3	0.00		K x, 5.7 · 10										
			Same	0.0												
魔		П	1	0.0		Ghisia in matrice sabbiosa (Acqua Interno a - 7,50 m.)										
3			10 to		Ŧ	12 2 × 10 -3					u					
3	11.0		10	0.0		Court Court			1							
2000	31.5		12	000	Ī	Argilla brunn-qialla										
			150	00	6	%≥ 4.9.10 ihiala in matrice limosa	6									
			Same of Co	0-		11 - 1000-2010-0-20				1						
The state of	19.0		30	2-0		C × 5.4 × 10 **										
1			20	- pr		8.			1	1				1		
	111		7	*		rgilla sabbiosa rossastro-azr on detrita roccieso	race		1	1	ľ			1		
				- p		K x 3.4.10	4						1			
	25.0		15			RMEHE SONDASSIO ezometro #-80 mm. 25.00 ml.						`				
		- 1 1	1					ř								
		3	Served Served Served			34		-								
		1	Name of the last													
獨一			i .													

scala 1:25.000

UBICAZIONE

FOGLIO: 119

TAVOLA: CAMPIGLIA.M.

MERIDIANO RET.: 38

PARALLELO RET.: 67

CODICE: 255

TIPO: SONDAGGIO

Note: rete controllo CIGRI Quota s.l.m.; 32.00 m

Liv. falda 10/93: 5.07 m d.p.c.

Liv. falda 01/94; 5.11 m d.p.c.

7-22 715 7-15 7-15 7-15 7-15 7-15	ICH FRLMAZII 50% ASSIO 6 * 1	12 (1) 14 (1) 1-10 (1) (1) (1) (1) (1) (1) (1) (1) (1) (1)
CONTRETTENTE: COMBON	3210 CIURI VENTURINA	oras P.C. A. J. Janes
Strain Strain	STATE OF THE PROPERTY OF THE P	Mar. Dol. S. L.S. St.
S S S S S S S S S S S S S S S S S S S	ti- 7 descritions remains assaurants 100 descritions remains assaurants 100 descritions remains 100 descritions remains 100 descritions remains 100 descritions 10	3 = 1 = 10 = 10 = 10 = 10 = 10 = 10 = 10
	Line-sabbiese sarrone	- Service Color
2.3	Klof and = 2,29,10 00/3	
0.0	Limo-sabbioso marrone consistente	
100	a Kefme 2 1.38 cm/2 Livel201	alds fresty's
0.0		Titi i
20) (Acqua intorna s = 9.50 s.)	
10.2	Liam argillosa ocra	
2.0	Ling argilloso con inclusi carb.	
	Lima-sabbiaso ocra	
15.5	1.9 x 10 -5 ccop 2	
10~0~	事 wy ,	
300		
10-0-	da 16 a 20 " 4 10-5	
20-0	Chizia in matrice lines cur/3	
20~0	(Acqua (interne a - 16.00 a.)	10-4
20-0	da 16 a 29	
20-0	K telome = > 2 C in-4 3 10-4	
20-0	K Lefranc = > 2.6.10-2	
250-0		
30.		
aye	TERMINE SONDAGGIO Piezonetro # 80 ss. 10.00 ml.	

scala 1:25.000

UBICAZIONE

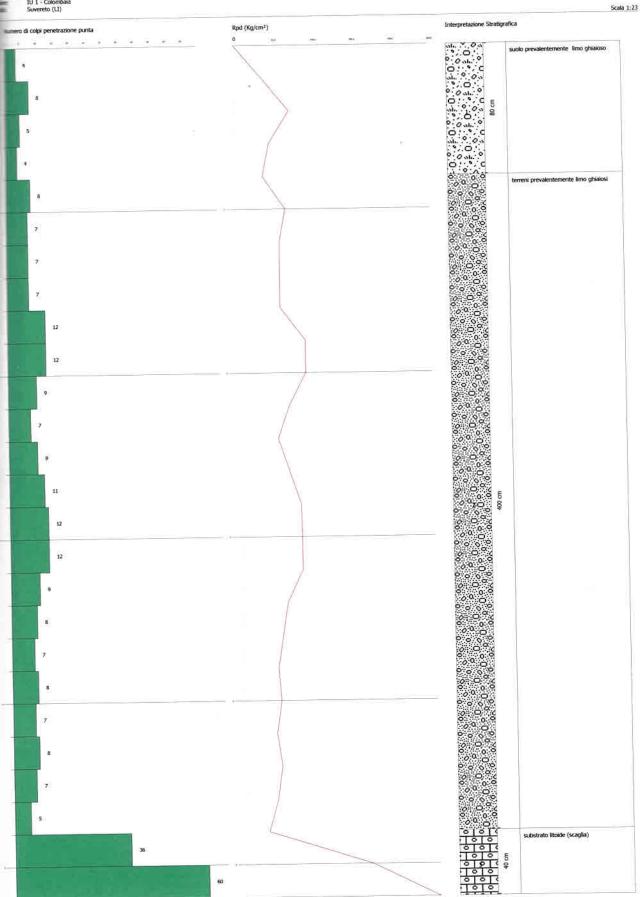
FOGLIO: 119

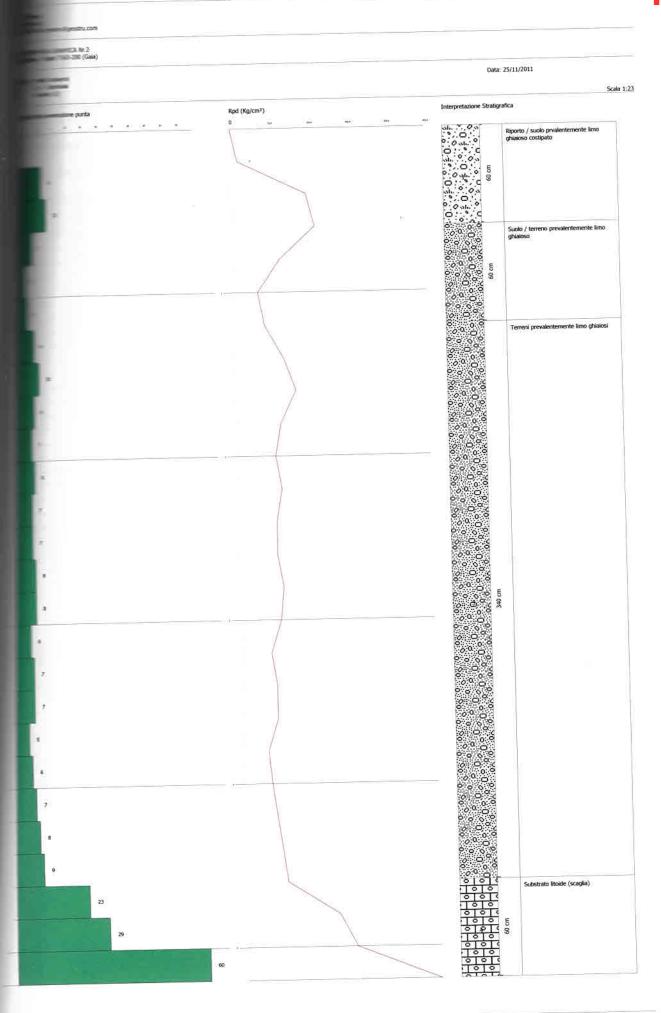
TAVOLA: CAMPIGLIA M.

MERIDIANO RET.: 36
PARALLELO RET.: 66

CODICE: 224

TIPO: SONDAGGIO


Note: rete controllo CIGRI Quota s.l.m.: 28.00 m Liv. falda 10/93: 3.91 m d.p.c.


Liv. falda 01/94: 8.49 m d.p.c.

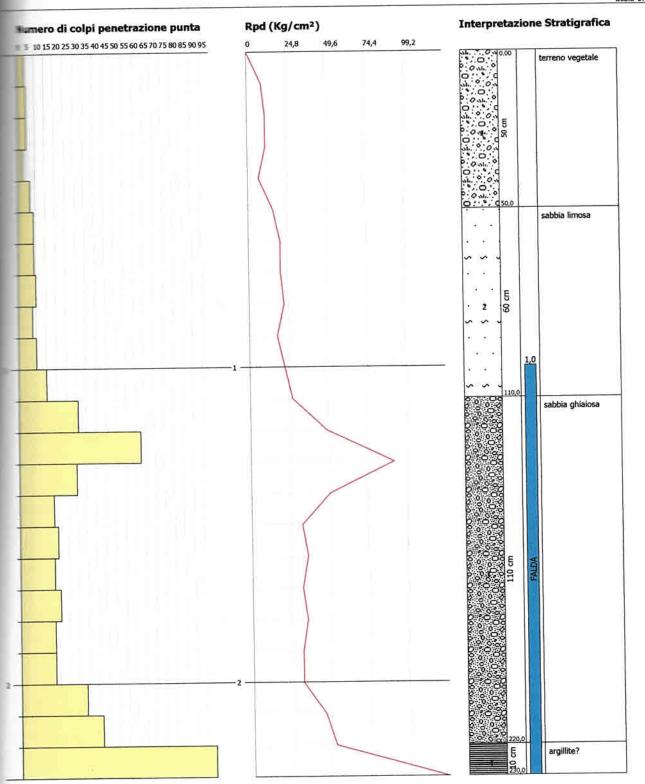
ETROMETRICA DINAMICA Nr.1 mizzato... Pagani TG63-200 (Gaia)

Fratelli Camberini IU 1 - Colombala Suvereto (LI)

Data: 25/11/2011

TVA PENETROMETRICA DINAMICA Nr.1 mento utilizzato... DIN 4094 (PG) GRAMMA NUMERO COLPI PUNTA-RPD

Committente:


Fonte Nuova

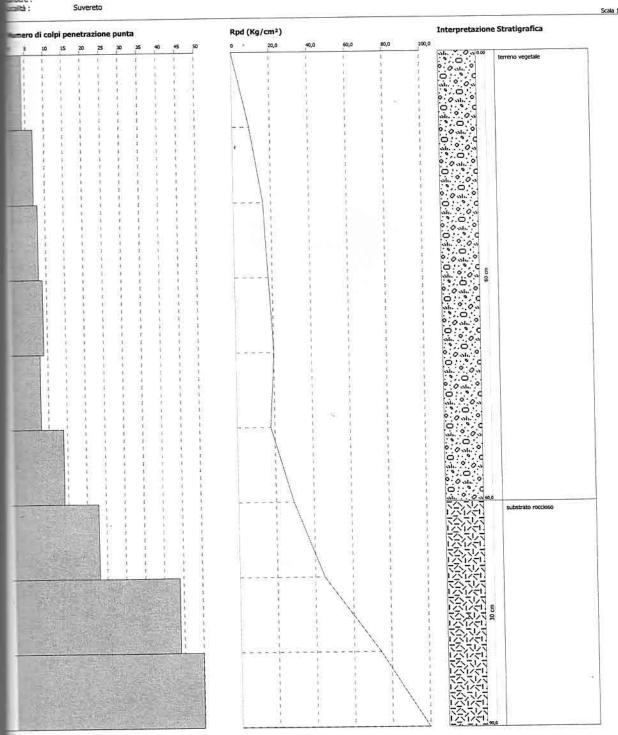
Data:09/03/2007

Cantiere : Località :

Suvereto

Scala 1:12

ENETROMETRICA DINAMICA Nr.3 utilizzato... DIN 4094 (PG) MA NUMERO COLPI PUNTA-Rpd

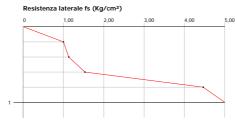

Data:09/03/2007 Fonte Nuova erte: Suvereto Scala 1:3 o di colpi penetrazione punta Rpd (Kg/cm²) Interpretazione Stratigrafica 40 15 20 25 30 40,0 60,0 80,0 terreno vegetale

PENETROMETRICA DINAMICA Nr.4 ento utilizzato... DIN 4094 (PG) EAMMA NUMERO COLPI PUNTA-Rpd

mittente : pere :

Fontenuova

Data:09/03/2007

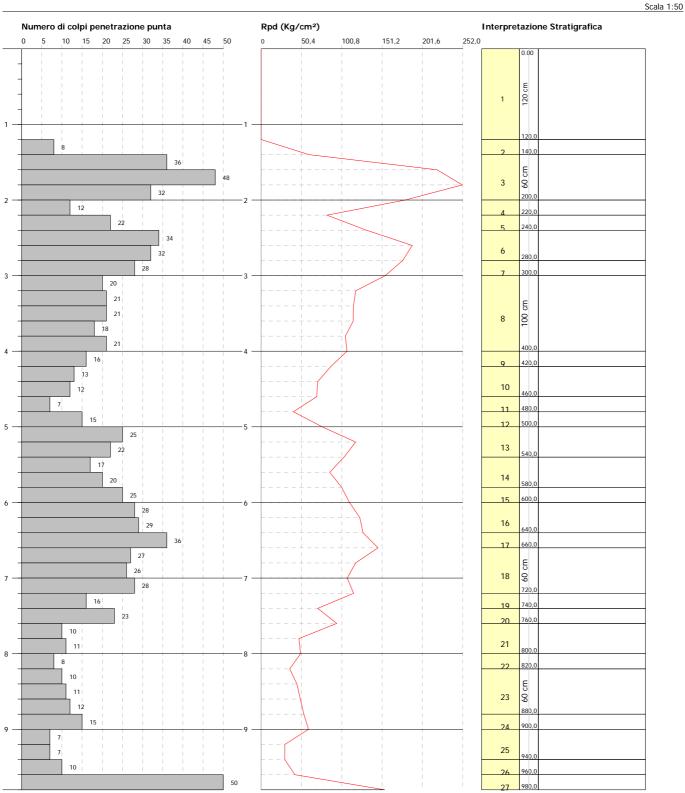


Scala 1:50

Probe CPT - Cone Penetration Nr.1 Strumento utilizzato... PAGANI TG 63 (200 kN) Diagramma Resistenze qc fs

Committente : Cantiere : Località : Giorgi Edilizia S.r.I. Indagini penetrometriche statico-dinamiche Forni - Suvereto Data :19/11/2007

Resistenza punta qc (Kg/cm²) 24,0 72,0 96,0 120,0 48,0

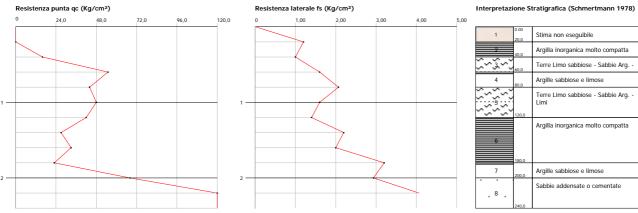

Interpretazione Stratigrafica (Schmertmann 1978)

1	20,0	Stima non eseguibile
సంస్థంక	40,0	Terre Limo sabbiose - Sabbie Arg
3	60,0	Argilla inorganica molto compatta
4	80,0	Argille sabbiose e limose
5	100,0	Argilla inorganica molto compatta
6	120,0	Sabbie addensate o cementate
-		Stima non eseguibile
7		
	180.0	

PROVA PENETROMETRICA DINAMICA Nr.1 Strumento utilizzato... DPSH (Dinamic Probing Super Heavy) DIAGRAMMA NUMERO COLPI PUNTA-Rpd

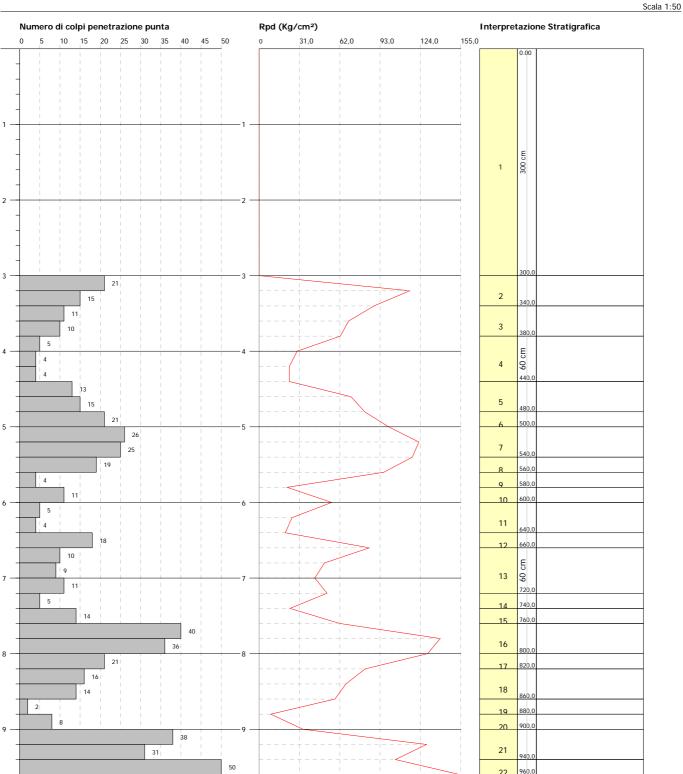
Committente : Giorgi Edilizia S.r.l. Data:19/11/2007

Indagini penetrometriche statico-dinamiche Forni - Suvereto Cantiere Località :

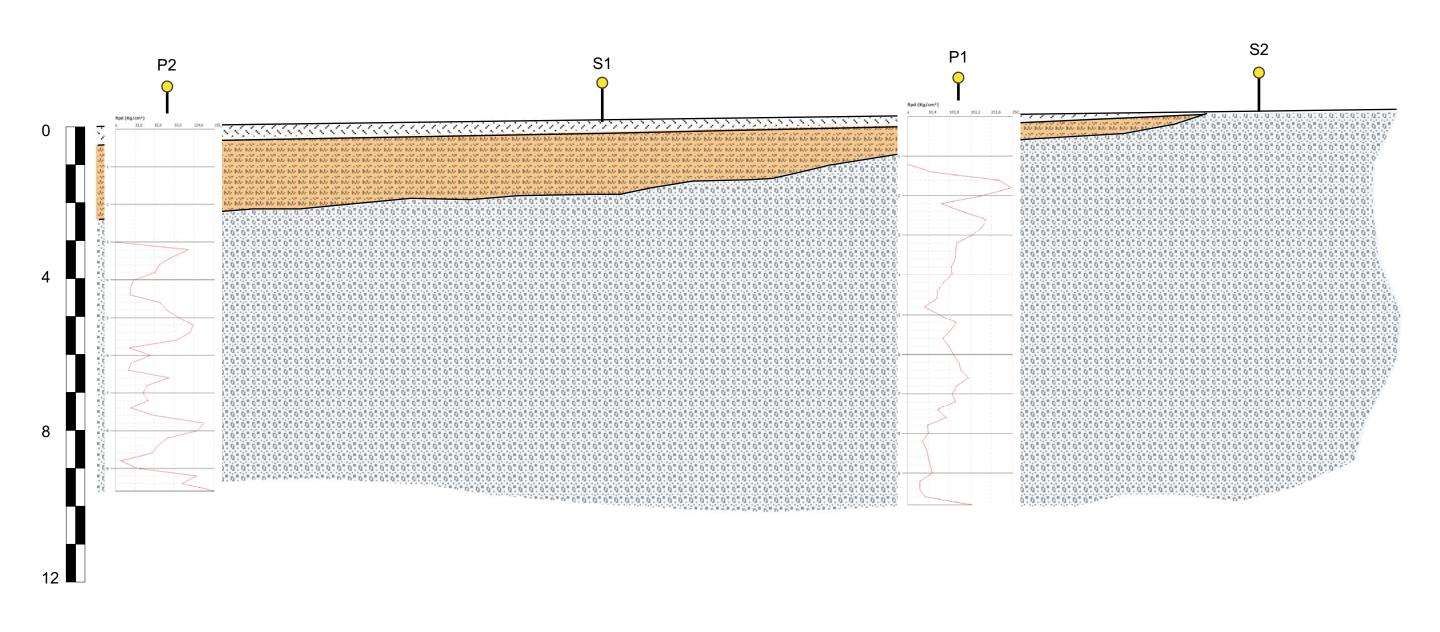


Probe CPT - Cone Penetration Nr.3 Strumento utilizzato... PAGANI TG 63 (200 kN) Diagramma Resistenze qc fs

Committente : Cantiere : Località : Giorgi Edilizia S.r.l. Indagini penetrometriche statico-dinamiche Forni - Suvereto Data :19/11/2007


Scala 1:50

PROVA PENETROMETRICA DINAMICA Nr.2 Strumento utilizzato... DPSH (Dinamic Probing Super Heavy) DIAGRAMMA NUMERO COLPI PUNTA-Rpd

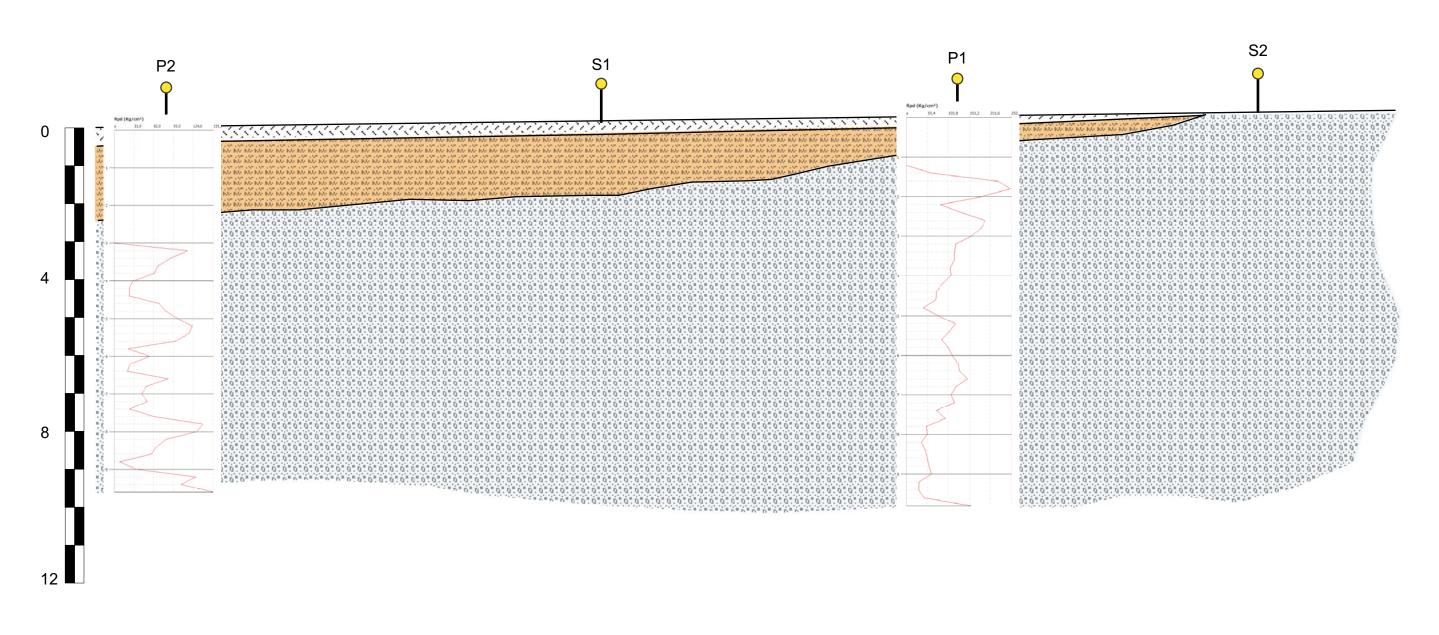

Giorgi Edilizia S.r.l. Data:19/11/2007

Committente : Cantiere : Località : Indagini penetrometriche statico-dinamiche Forni - Suvereto

SEZIONE STRATIGRAFICO TECNICA

scale delle distanze 1:500 - scale delle altezze 1:100

Terreno di riporto


Ghiaie in matrice sabbioso-limosa

Argille limose consistenti

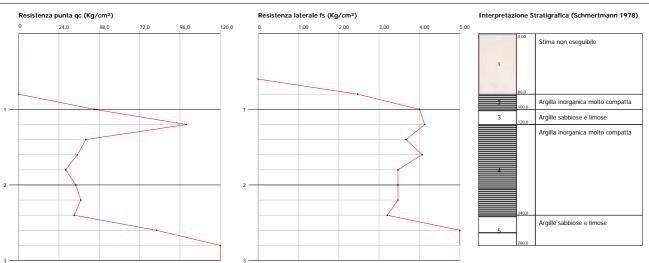
SEZIONE STRATIGRAFICO TECNICA

scale delle distanze 1:500 - scale delle altezze 1:100

Terreno di riporto

o"o"o"o"o" o"o"o"o"o"o"

Ghiaie in matrice sabbioso-limosa



Argille limose consistenti

Probe CPT - Cone Penetration Nr.2 Strumento utilizzato... PAGANI TG 63 (200 kN) Diagramma Resistenze qc fs

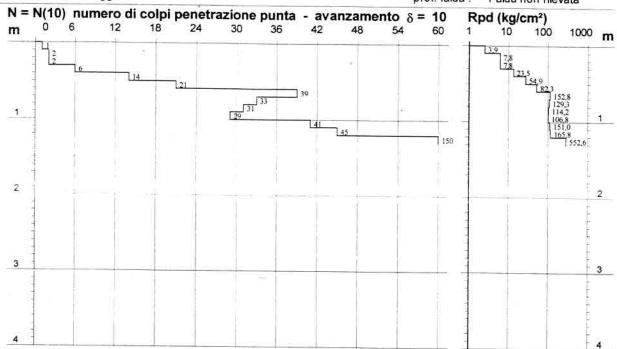
Committente : Cantiere : Località : Giorgi Edilizia S.r.I. Indagini penetrometriche statico-dinamiche Forni - Suvereto Data :19/11/2007


Scala 1:50

Probe CPT - Cone Penetration P1 Strumento utilizzato... PAGANI TG 63 (200 kN) Diagramma Resistenze qc fs

Committente : Cantiere : Localită : Geol. Dario D'Avino 110331c S. Lorenzo - Suvereto (LI) Data:31/03/2011 nza punta Qc (Kg/cm²) 40,0 150,0 200,0 2,00 5,00 8,00 10,00 Stima non eseguibile Limi - Argille Sabbiose Limi Sabbiosi - Sabbie Limose Limi - Argille Sabbiose Sabbie dense - Sabbie con Ghiaia Limi - Argille Sabbiose Limi Sabbiosi - Sabbie Limose Limi - Argille Sabbiose

PT - Cone Penetration P2 —to utilizzato... PAGANI TG 63 (200 kN) —ma Resistenze qc fs


Riferimento: 16-2002

PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd

n°9

- località : Cafaggio - Colombaia - prof. falda : Falda non rilevata

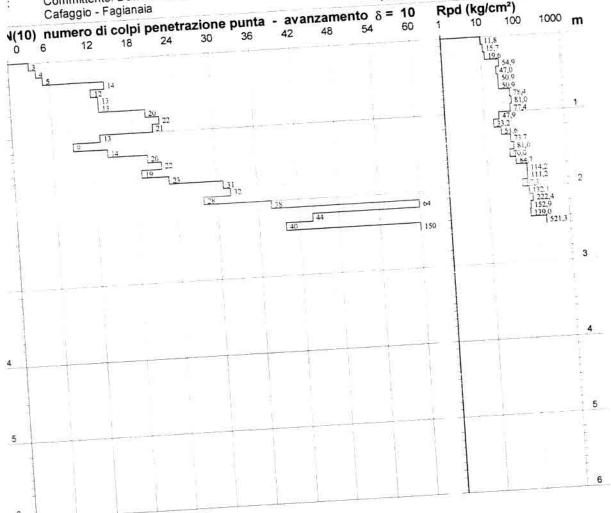
⁻ PENETROMETRO DINAMICO tipo : DL-30 (60°)

⁻ M (massa battente)= 30,00 kg - H (altezza caduta)= 0,20 m - A (area punta)= 10,00 cm² - D(diam. punta)= 35,70 mm

⁻ Numero Colpi Punta N = N(10) [δ = 10 cm]

⁻ Uso rivestimento / fanghi iniezione : NO

Riferimento: 16-2002


Scala 1: 50

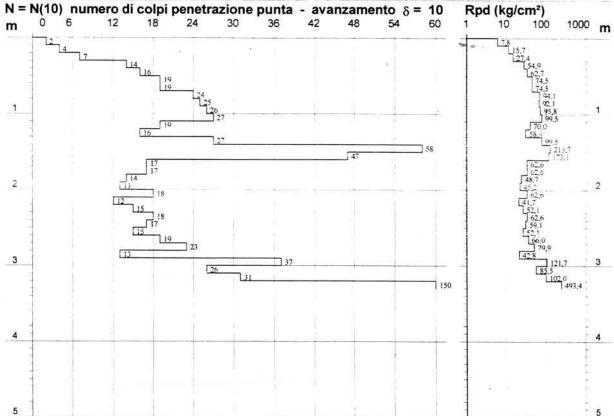
n° 10

21/06/2002 - quota inizio: 0.00 Geotecnica Committente: Dott.ssa Giannini - prof. falda :

Falda non rilevata Cafaggio - Fagianaia Rpd (kg/cm²)

Loc. Campo all'Olmo n°9 - 57020 Campiglia Staz. (LI) - Tel. 0565/276128 - cell. 0338/8824712

Riferimento: 16-2002

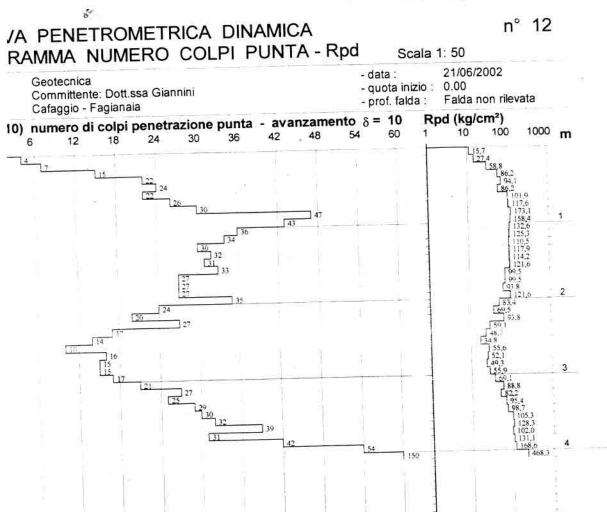

Scala 1: 50

PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd

n° 11

- indagine : Geotecnica - data : 21/06/2002 - cantiere : Committente: Dott.ssa Giannini - quota inizio: 0.00

- località : Cafaggio - Fagianaia Falda non rilevata prof. falda :



⁻ PENETROMETRO DINAMICO tipo : DL-30 (60°)

⁻ M (massa battente)= 30,00 kg - H (altezza caduta)= 0,20 m - A (area punta)= 10,00 cm 2 - D(diam. punta)= 35,70 mm - Numero Colpi Punta N = N(10) [δ = 10 cm] - Uso rivestimento / fanghi iniezione : NO

riche dinamiche INUCCI mo n°9 - 57020 Campiglia Staz. (LI) - Tel. 0565/276128 - cell. 0338/8824712

Riferimento: 16-2002

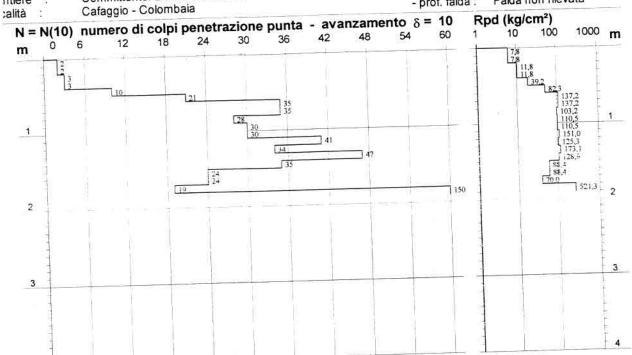
battente)= 30,00 kg - H (altezza caduta)= 0,20 m - A (area punta)= 10,00 cm² - D(diam. punta)= 35,70 mm - Uso rivestimento / fanghi iniezione : NO

penetrometriche dinamiche IOL LUCA FINUCC ampo all'Olmo n°9 - 57020 Campiglia Staz. (LI) - Tel. 0565/276128 - cell. 0338/8824712

lagine:

ntiere :

Riferimento: 16-2002


PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd

n°8

Scala 1: 50 21/06/2002

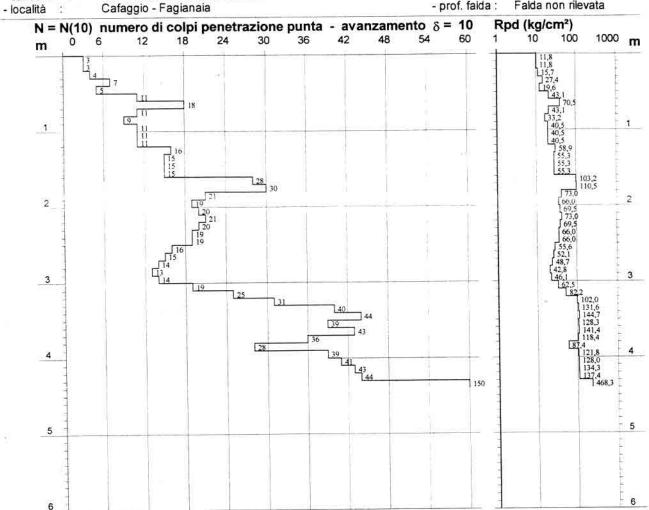
Geotecnica - quota inizio: 0.00

Committente: Dott.ssa Giannini Falda non rilevata - prof. falda :

PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd n° 6

Riferimento: 16-2002

Scala 1: 50


- indagine : - cantiere : Geotecnica

Committente: Dott.ssa Giannini

- data : 20/06/2002

- quota inizio: 0.00

- prof. falda : Falda non rilevata

- M (massa battente)= 30,00 kg - H (altezza caduta)= 0,20 m - A (area punta)= 10,00 cm 2 - D(diam. punta)= 35,70 mm - Numero Colpi Punta N = N(10) [δ = 10 cm] - Uso rivestimento / fanghi iniezione : NO

Riferimento: 16-2002

PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd

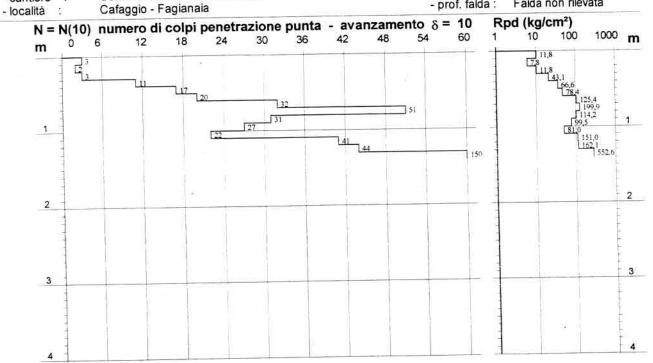
n° 7

- indagine :

Geotecnica

- cantiere :

Committente: Dott.ssa Giannini


- data :

21/06/2002

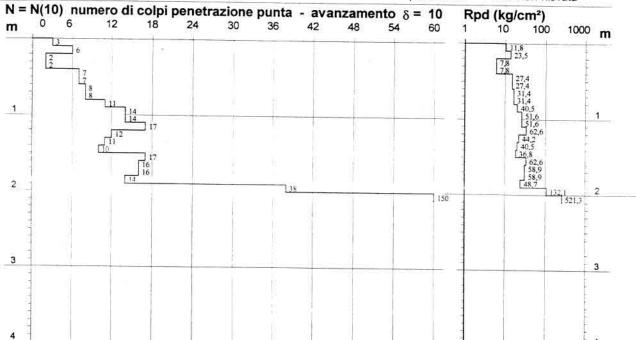
- quota inizio: 0.00

Faida non rilevata - prof. falda :

Scala 1: 50

- PENETROMETRO DINAMICO tipo : DL-30 (60°)

- M (massa battente)= 30,00 kg - H (altezza caduta)= 0,20 m - A (area punta)= 10,00 cm² - D(diam. punta)= 35,70 mm - Numero Colpi Punta N = N(10) [δ = 10 cm] - Uso rivestimento / fanghi iniezione : NO


Riferimento: 16-2002

PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd

n° 5

Scala 1: 50 - indagine : Geotecnica - data : 20/06/2002 - cantiere : Committente: Dott.ssa Giannini

- quota inizio: 0.00 - località : Cafaggio - Fagianaia - prof. falda: Falda non rilevata

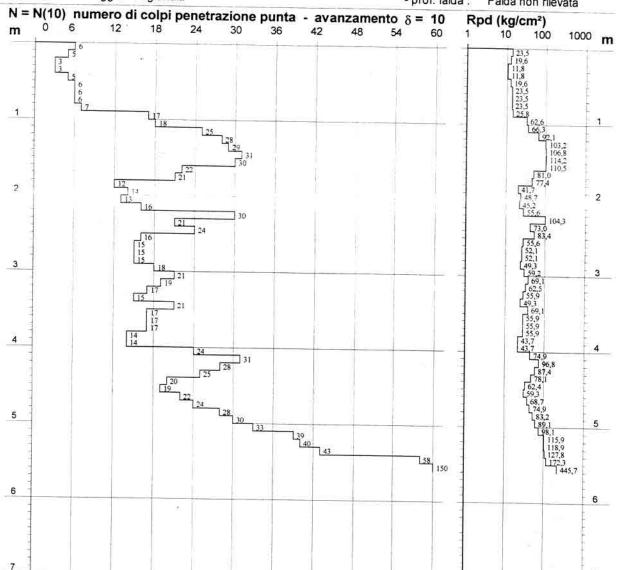
⁻ PENETROMETRO DINAMICO tipo : DL-30 (60°)

⁻ M (massa battente)= 30,00 kg - H (altezza caduta)= 0,20 m - A (area punta)= 10,00 cm² - D(diam. punta)= 35,70 mm

⁻ Numero Colpi Punta N = N(10) [δ = 10 cm]

⁻ Uso rivestimento / fanghi iniezione: NO

Scala 1: 50


Loc. Campo all'Olmo n°9 - 57020 Campiglia Staz. (LI) - Tel. 0565/276128 - cell. 0338/8824712

PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd

n°3

- indagine : - data : 20/06/2002 - cantiere : Committente: Dott.ssa Sandra Giannini - quota inizio: 0.00

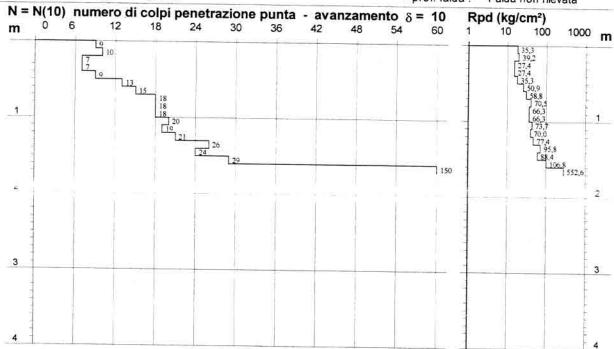
- località Cafaggio - Fagianaia - prof. falda : Falda non rilevata

⁻ PENETROMETRO DINAMICO tipo : DL-30 (60°)

⁻ M (massa battente)= 30,00 kg - H (attezza caduta)= 0,20 m - A (area punta)= 10,00 cm² - D(diam. punta)= 35,70 mm

⁻ Numero Colpi Punta N = N(10) [δ = 10 cm]

⁻ Uso rivestimento / fanghi iniezione : NO


Riferimento: 16-2002

PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd

n° 1

DIAG	CHINIA NOIVIERO COLPI PUNTA	A - Rpd Scala	1: 50
- indagine :	Geotecnica	- data :	20/06/2002
- cantiere :	Committente: Dott.ssa Giannini	- quota inizio :	Part of the second second

- località : Cafaggio - Fagianaia - prof. falda: Falda non rilevata

⁻ PENETROMETRO DINAMICO tipo : DL-30 (60°)

⁻ M (massa battente)= 30,00 kg - H (altezza caduta)= 0,20 m - A (area punta)= 10,00 cm² - D(diam. punta)= 35,70 mm

⁻ Numero Colpi Punta N = N(10) [δ = 10 cm]

⁻ Uso rivestimento / fanghi iniezione : NO

Probe CPT - Cone Penetration P1 Strumento utilizzato... PAGANI TG 63 (200 kN) Diagramma Resistenze qc fs

Committente : Cantiere : Localită : Geol. Dario D'Avino 110331c S. Lorenzo - Suvereto (LI) Data:31/03/2011 nza punta Qc (Kg/cm²) 40,0 150,0 200,0 2,00 5,00 8,00 10,00 Stima non eseguibile Limi - Argille Sabbiose Limi Sabbiosi - Sabbie Limose Limi - Argille Sabbiose Sabbie dense - Sabbie con Ghiaia Limi - Argille Sabbiose Limi Sabbiosi - Sabbie Limose Limi - Argille Sabbiose

Mienmento: 16-2002

PROVA PENETROMETRICA DINAMICA DIAGRAMMA NUMERO COLPI PUNTA - Rpd

n° 4

- indagine : - cantiere : Geotecnica

Committente: Dott.ssa Giannini

- data :

20/06/2002

- quota inizio: 0.00

Scala 1: 50

- prof. falda : Falda non rilevata

- PENETROMETRO DINAMICO tipo : DL-30 (60°)

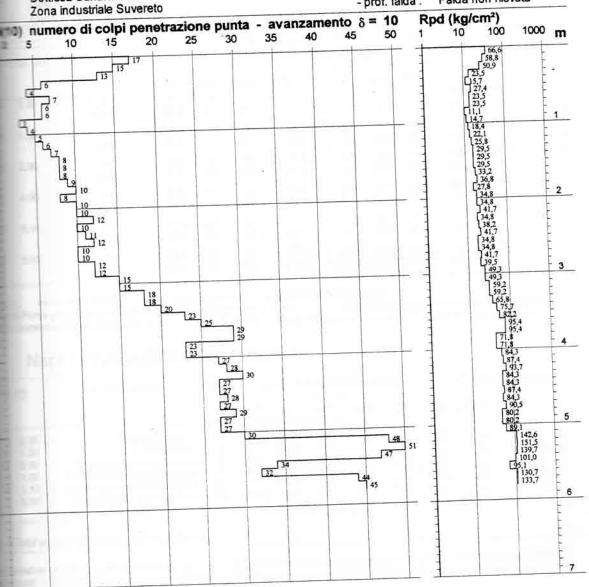
- M (massa battente)= 30,00 kg - H (altezza caduta)= 0,20 m - A (area punta)= 10,00 cm² - D(diam. punta)= 35,70 mm

- Numero Colpi Punta N = N(10) [δ = 10 cm]

- Uso rivestimento / fanghi iniezione : NO

- 57020 Campiglia Staz. (LI) - Tel. 0565/276128 - cell. 0338/8824712

Riferimento: 08-2001

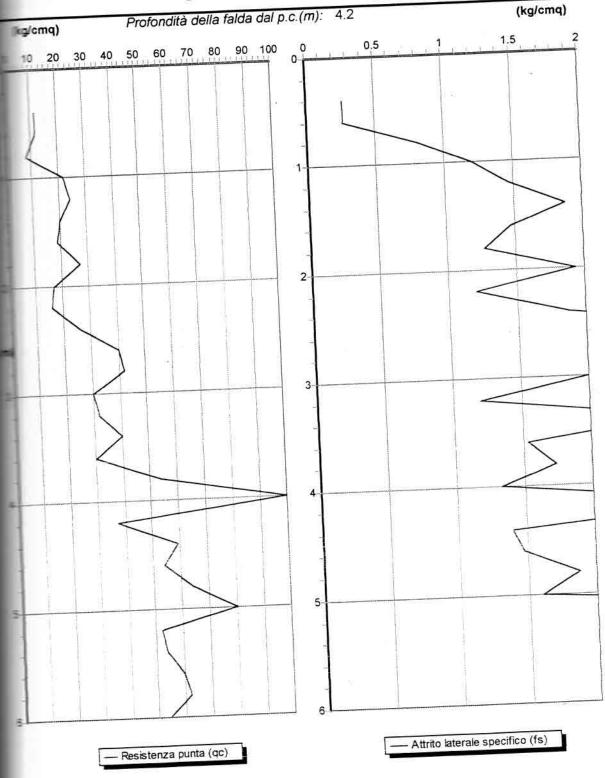

VA PENETROMETRICA DINAMICA RAMMA NUMERO COLPI PUNTA - Rpd

n° 1

Geotecnica Dott.ssa Sandra Giannini Scala 1: 50 02/04/2001

- quota inizio : 0.00 - prof. falda : Falda

Falda non rilevata


mente: Giannini Sandra

Acquari Suvereti (LI)

Penetrometro: Deep Drill 5 Ton.

Sigla: cpt2

Grafico della prova

Certificato n. del 15/12/01

Firma:

ST		GEOLOGIA ASSOCIATO PROSPETTO S	TR	AT.	[G	RA.	FI	CO
Com		nza : Soc. Coop. Ed. MANTA Localita	':P	rata	di	Suv	ere	eto
SCAL	LA 1:50	SCAVO ESPLORATIVO n. 1	RI	I ATI	PIEZ	OMETR	0 : .	NO
IDITA' m	RAFL	QUOTA TOPOGRAFICA m. 321.0 circa	LLI	PION URB/	PRO	OVE	IN	SITU
PROFONDITA'	STRATIGRAFIA	DESCRIZIONE LITOLOGICA	LIVELLI ACQUIFERI	CAMPIONI DISTURBA	PIEZ PRO SPT	1 2	PP 3 4 5	5 6 FS
		SUOLO AGRARIO (impasti sabbioso-limoso-argillosi con di- spersione di frammenti lapidei)						
1		Successione di strati calcarei e calcareo-marnosi centi- metrici marroni e neri, intervallati da sottili orizzonti argillitici						
2 -								
3 -								
4								
6								
8					-		THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TRANSPORT NAMED IN COLU	

	mitter	P. Toselli n.11 TOOT LITTO Zaza : Soc. Coop. Ed. MANTA Localita'	:Pi	rata	Q1	OMETR	er 0 ·	NO NO
AL	A 1:50	SCAVO ESPLORATIVO n. 2	ERI	NI BATI	DDA	OMETIC		SITU
E	BRAFI	QUOTA TOPOGRAFICA m. 321.0 circa	LIVELLI ACQUIFE	MPIC	PRU	JVE		
LIVELLI	STRATIGRAFIA	DESCRIZIONE LITOLOGICA	AC	CAMPIONI	SPI	1 2 3	3 4	5 6 FS
7	īs.	SUOLO AGRARIO (impasti sabbioso-limoso-argillosi con di- spersione di frammenti lapidei)						
2								
		Successione di strati calcarei e calcareo-marnosi centi- metrici marroni e neri, intervallati da sottili orizzonti argillitici						
					<u> </u>			
				-	-			
2								
ر ا					-	+++	i.	
			-=	-	+			
3								
			-	-		-		
4						200		
						_	4	
6							j.	
							1	
	1							لللإ

P31

Via	DI GEOLOGIA ASSOCIATO Ale P. Toselli n.11 PROSPETTO S						
Committe		a':P	rate	di	i Su	ver	eto
SCALA 1:50	SCAVO ESPLORATIVO n. 3	2	_ 5	PIEZ	ZOMETF	05:	NO
m m 3RAF	QUOTA TOPOGRAFICA m. 321.0 circa	LIVELLI ACQUIFERI	CAMPIONI	PR	OVE	IN	SITU
PROFONDITA' LIVELLI m STRATIGRAFIA	DESCRIZIONE LITOLOGICA			SPT		PP	
	SUOLO AGRARIO (impasti sabbioso-limoso-argillosi con di- spersione di frammenti lapidei)						
	Successione di strati calcarei e calcareo-marnosi centi- metrici marroni e neri, intervallati da sottili orizzonti						
	argillitici						
						Ħ	H
1							
					1 3		
							H
2							
						-	
Ħ							
3							
Ħ							
4							
H							
						4	4.
3							
				_			
8							

di Suveret

DISTORETRO : NO

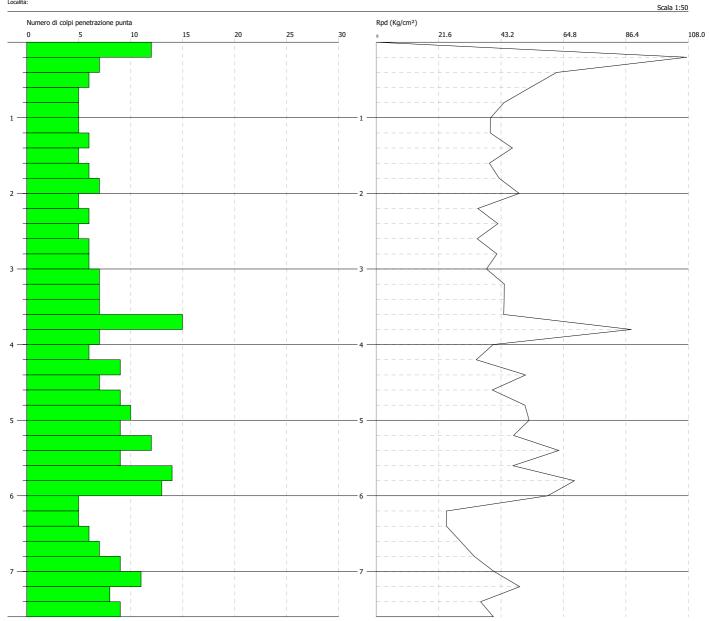
PROVE IN

SPT

SPT PROSPETTO STRATIGRAFICO STUDIO DI GEOLOGIA ASSOCIATO Viale P. Toselli n.11 Soc. Coop. Ed. MANTA Localita' : Prata di Suvereto Committenza : SCALA 1:50 SCAVO ESPLORATIVO n. 4 LIVELLI ACQUIFERI STRATIGRAFIA PROVE IN SITU QUOTA TOPOGRAFICA m. 321.0 circa E DESCRIZIONE LITOLOGICA 1 2 3 4 5 6 FS SUOLO AGRARIO (impasti sabbioso-limoso-argillosi con di-spersione di frammenti lapidei) Successione di strati calcarei e calcareo-marnosi centimetrici marroni e neri, intervallati da sottili orizzonti 6

S	Viale P. Toselli n.11 PROSPETTO STRATIGRAFICO											
	nmitte	nza : Soc. Coop. Ed. MANTA Localita	a':P	rata	di	Suver	eto					
	LA 1:50	SCAVO ESPLORATIVO n. 5	RI	I ATI	PIEZ	OMETRO :	NO					
NDITA	GRAFI	QUOTA TOPOGRAFICA m. 321.0 circa	LLI	PION URB	PRO	OVE IN	SITU					
PROFONDITA'	STRATIGRAFIA	DESCRIZIONE LITOLOGICA	LIVELLI ACQUIFERI	CAMI	SPT	OMETRO: OVE IN PP 1234	5 6 FS					
		SUOLO AGRARIO (impasti sabbioso-limoso-argillosi con di- spersione di frammenti lapidei)										
		Successione di strati calcarei e calcareo-marnosi centi-				7-1-	****					
		metrici marroni e neri, intervallati da sottili orizzonti argillitici										
1												
	Ī					++++	444					
2	l											
							4444					
3												
	j											
	T.					++++						
4												
	1											
							444					
6												
8												

di Suveret
PIEZOMETRO : NO
PROVE IN
SPT STUDIO DI GEOLOGIA ASSOCIATO PROSPETTO STRATIGRAFIC Viale P. Toselli n.11 Localita' : Prata di Suvereto Committenza : Soc. Coop. Ed. MANTA SCALA 1:50 SCAVO ESPLORATIVO n. 6 STRATIGRAFIA QUOTA TOPOGRAFICA m. 321.0 circa PROVE IN SITU LIVELLI DESCRIZIONE LITOLOGICA 1 2 3 4 5 6 FS SUOLO AGRARIO (impasti sabbioso-limoso-argillosi con di-spersione di frammenti lapidei) Successione di strati calcarei e calcareo-marnosi centimetrici marroni e neri, intervallati da sottili orizzonti argillitici 1 3 4 6


STUDIO DI GEOLOGIA ASSOCIATO PROSPETTO STRATIGRAFICO Viale P. Toselli n.11 Localita' : Prata di Suvereto Soc. Coop. Ed. MANTA Committenza : SCALA 1:50 PROVE IN SITU

SPT PP

1 2 3 4 5 6 FS PIEZOMETRO : NO SCAVO ESPLORATIVO LIVELLI ACQUIFERI PROFONDITA' QUOTA TOPOGRAFICA m. 321.0 circa LIVELLI DESCRIZIONE LITOLOGICA 1 2 3 4 5 6 FS SUOLO AGRARIO (impasti sabbioso-limoso-argillosi con di-spersione di frammenti lapidei) Successione di strati calcarei e calcareo-marnosi centimetrici marroni e neri, intervallati da sottili orizzonti 1 2 3 4 6

PROVA PENETROMETRICA DINAMICA Nr.1 Strumento utilizzato... DPSH TG 63-200 PAGANI

SIGNATURE 1 SIGNATURE 2

676

CIGRI - Venturina (LI)	Tipo di sondaggio <u>A ellca</u>
ProgettoCornia ricarica	Quota del p.c32.8 m s.l.m.
Cantiere Sondaggio S 9	Quota del p.rifp.c.
Data inizio perforazione29/01/1993	Profonditá8.00 m
Data fine perforazione29/01/1993	Assistenza geologica_GETAS-PETROGEO s.r.l Pisa

_												ASSISTENZA GEOLOGICA
DIAMETRO	ASSOLUTA	PROFONDITÁ dal p.c.	SISTEMAZIONE FINALE DEL FORO	CAM N.	QUOTA	RE	CUI	PERMEABILITÁ (carico costante) K in m/s	PROFONDITÁ (m)	LITOLOGIA	ACQUIFERA	TORYANE TORYANE TORYANE TORYANE TORYANE PROFONDITÀ (M dai p.c.) (Kg/cm²) DESCRIZIONE DEI TERRENI ATTRAVERSATI
g 20									1			Terreno vegetale -0.7 Sabbione con ghiaia medio-fine e pochissima matrice limosa
								3.40 m K=1.2×10 ⁻³	3 4		L.S.	Ghiaia gradata fino a medio-fine con frequenti ciottoli Ø >5 cm e sabbia in poca matrice limosa
									6			Ghiaia c.s. in matrice limoso-sabbiosa 5.8 Ghiaia c.s. in pochissima matrice limoso- sabbiosa Ghiaia c.s. in matrice limoso-sabbiosa
								7.80 m K=4.6x10 ⁻⁴	9	<u>0</u> 0		L.S. = 3.95 m sotto il p.c.
								n . a	11 12			
									13			FIG. 24

675

Committente CIGRI - Venturina (LI)	Tipo di sondaggio A elica
ProgettoCornia ricarica	Quota del p.c. 33.50 m s.l.m.
Cantiere Sondaggio S 8	Quota del p.rifp.c.
Data inizio perforazione25/01/1993	Profonditá9.00 m
Data fine perforazione25/01/1993	Assistenza geologica GETAS-PETROGEO s.r.l Pisa

						_	-	-							
DIA	ASSI	PROF	SISTE	CAM	PIONI	PI		ENI		PROFONDITÁ	A C O TI		POCKE (Kg	TOR	
DIAMETRO	ASSOLUTA	PROFONDITÁ dal p.c.	SISTEMAZIONE FINALE DEL FORO	N.	QUOTA				K in m/s	NDITÁ (m)	DUIFERA	DESCRIZIONE DEI TERRENI ATTRAVERSATI	POCKET PENETR. (Kg/cm²)	(m dal p.c.)	f = v9/cm
0										1		Ghiaia da grossolana a medio-fine con ciottoli in matrice sabbiosa e con poco limo -0.6			
									3.88 m K=4.7x10 ⁻⁴	3 4	L.S.	Ghiaia media e fine e sabbia grossolana con ciottoli in matrice limoso-sabbiosa (localmente ghiaia più sciolta)			
										6					
									7.78 m K=3.4×10 ⁻⁴	9		9			
										10	1	L.S. = 2.97 m sotto il p.c.			
										12					
										14					FIG. 21

FIG. 16

			-	-	- Carte And	Carp desi		and a later to the	- Tables		HOME					elikara.
	Gom	mitt	ente	2		CIC	RI -	Venturina (LI	-	1		Tipo di sondaggio			
	Prog	etto.			Cor	nia	rica	rica					Quota del p.c33-80-m s.l.m. 33,0			
													Quota del p.rif. p.c.			
	Data	ini	zio	perfo	razi	one		10/02/	199	3			Profonditá8.00 m			
								. 10/02/					Assistenza geologica_GETAS-PETROGEO s.r.1.	P	isa	
_																
DIAMETRO	ASSOLUTA	PROFONDITÁ dal p.c.	SISTEMAZIONE FINALE DEL FORO	CAMP		0	RCENT. DEL UPERO	PROVE DI PERMEABILITÁ (carico costante) K in m/s	ATIC	LITOLOGIA	ACQUIFERA		DESCRIZIONE DEI TERRENI ATTRAVERSATI	POCKET PENETR	PROFONDITÀ (m dal p.c.)	E 7; = Kg/cm ²
g 120			NE RO			10 30	50 70 90		(m)	113/1 ~ // ~			Terreno vegetale	ri ri	5 %	12
									1				Sabbia grossolana e ghiaia fine in poca matrice limosa			
									3		L.S.	-2	Ghiaia media e fine con pochi ciottoli ø 5-8 cm, sabbia grossolana in poca matrice limosa			
			4.					7,80 m	6			-5	.5 Ghiaia e ciottoli c.s. in matrice limosa			
					.5			K=4.5×10 ⁻⁴	9			-8	L.S. = 3.53 m sotto il p.c.			
									111							
									13							

674

Committente CIGRI - Venturina (LI)	Tipo di sondaggio A elica
ProgettoCornia ricarica	Quota del p.c33.60 m s.l.m.
Cantiere Sondaggio S 7	Quota del p.rifp.c.
Data inizio perforazione26/01/1993	Profonditá9.00 m
Data fine perforazione 26/01/1993	Assistenza geologica_GETAS-PETROGEO s.r.1 Pisa

	Data fine perforazione Assistenza geologica GETAS TETROGEO ST. TISA															
0			FS	CAMI	PIONI	_			T	P				g	TORY	IANE
DEL FORO (mm)	QUOTA	PROFONDITÁ dal p.c.	SISTEMAZIONE FINALE DEL FORO			RE	DE	ENT L PERC	PERMEABILITÁ (carico costante) K in m/s	PROFONDITÁ (m)	LITOLOGIA	FALDA	DESCRIZIONE DEI TERRENI ATTRAVERSATI	POCKET PENETR. (Kg/cm²)	PROFONDITÀ (m dal p.c.)	7 = Kg/cm²
я́ 320										1			Terreno vegetale -0.3 Sabbia grossolana con ciottoli ∮ 4-5 cm e poco limo			
									3.60 m K=1.1×10 ⁻⁴	3.4		L.S.	Ghiaia gradata e sabbia grossolana con ciottoli in matrice limoso-sabbiosa			
										6						
									8.70 m K=8.1x10 ⁻⁵		0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		-8.2 Limo argilloso con ciottoli e ghiaia -8.5 medio-fine Ghiaia e sabbia grossolana con ciottoli -9 in matrice limosa			
					***					11			L.S. = 3.37 m sotto il p.c.			
										12						
										14						FIG. 18

Committente CIGRI - Venturina (LI) Progetto Cornia ricarica Cantiere Sonciaggio S 1 Data inizio perforazione 19/01/1993 Data fine perforazione 19/01/1993 Data fine perforazione 19/01/1993 Data fine perforazione PROVE DI PROVE DI PROVE DI PERMEABILITÀ (Carico costante) RORO (CARICO LOS CANDETRO) DEL TORO COTTÀ N. QUOTA RECUPERO (Carico costante) R in m/s (E) DEL TORO COTTÀ DEL PROVE DI PERMEABILITÀ (Carico costante) R in m/s (E) DEL TORO COTTÀ DEL PORO EL TORO COTTÀ (CARICO COSTANTE) R IN QUOTA RECUPERO (CARICO COSTANTE) R IN QUOTA R IN QUOTA RECUPERO (CARICO COSTANTE) R IN QUOTA R												Tipo di sondaggio A elica Quota del p.c. 34 m s.l.m. Quota del p.rif p.c. Profonditá 11.00 m Assistenza geologica GETAS-PETROGEO s.r.l Pisa					
DEL FORO (mm)	QUOTA ASSOLUTA	PROFONDITÁ dal p.c.	SISTEMAZIONE		QUOTA	REC	DEL	PERMEABILITÁ (carico costante K in m/s	ROFONDIT	LITOLOGIA	ACQUIFERA		DESCRIZIONE DEI TERRENI ATTRAVERSATI	POCKET PENETR. (Kg/cm²)	PROFONDITÀ		
g 320								4	1	10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		1	Riporto: ciottolame, mattoni e sabbia				
								3.00 m	2				Ciottoli ∮ 5-8 cm con ghiaia e sabbia, in matrice limosa				
								K=5.6x10 ⁻⁴ (carico variabile)	4 5		L.S.						
								6.90 m K=2.5×10 ⁻⁴	6				Ciottoli ø >5 cm, ghiaia e sabbia con poco limo				
									8			-8.8					
									10	00000			Ghiaia, da fine a grossolana, con sabbia e rari ciottoli, in matrice limosa				
								10.80 m K=6.0x10 ⁻⁴	11	0.0000		-11-					
									12				L.S. = 3.58 m sotto il p.c.				
									14							FIG. 1	

	Committente CIGRI - Venturina (LI) Progetto Cornia ricarica											Tipo di sondaggio A elica			
	Prog	etto.			Co	rnia	rica	arica				Quota del p.c. 34.40 m s.1.m.			
												Quota del p.rif			
								21/01/				Profonditá8.00 m			
								21/01/				Assistenza geologica GETAS-PETROGEO s.r.			
		- 1111									-	A 3 13 CHILD GOVERNMENT OF THE PROPERTY OF THE			
			71					1	ס				ا ت		
DIAMETRO	ASSOLUTA ASSOLUTA	PROFONDITÁ dal p.c.	SISTEMAZIONE FINALE DEL FORO			REC	RCEN DEL UPER	PERMEABILITÁ (carico costante) K in m/s	ROFON	LITOLOGIA	FALDA	DESCRIZIONE DEI TERRENI ATTRAVERSATI	POCKET PENETR. (Kg/cm²)	PROFONDITÀ (m dal p.c.)	χ = Kg/cm ²
0										7-1-2		Terreno vegetale limoso			
									1			Sabbia con ghiaia da media a fine e pochissimo limo, sporadici ciottoli ø max 6-7 cm			
								3.45 m K=7.7×10 ⁻⁴	5 6		s. =	Ciottoli con ghiaia da media a fine in matrice limoso-sabbiosa -6.3 Limo debolmente sabbioso inglobante ghiaia gradata e rari ciottoli Ghiaia gradata da media a fine con ciottoli, in matrice limosa debolmente sabbiosa			
								K=7.6x10 ⁴	9 10			L.S. = 3.15 m sotto il p.c.			
									12						
									13						
									14						FIG. 5

Committente CIGRI - Venturina (LI) Progetto Cornia ricarica	Tipo di sondaggio A elica Quota del p.c. 35-10 m.s.l.m. 34,8
Cantiere Sondaggio S3	Quota del p.rif. p.c.
Data inizio perforazione 22/01/1993 Data fine perforazione 22/01/1993	Profonditá8.50 m Assistenza geologicaGETAS-PETROGEO s.r.l Pisa
D D D CAMPIONI PERCENT PROVE D	O TORVANE

							_						q		
DIAMETRO	ASSOLUTA	PROFONDITÁ dal p.c.	SISTEMAZIONE FINALE DEL FORO	CAMI N.	QUOTA	RE	DE	PERMEABILITÁ (carico costante K in m/s		LITOLOGIA	ACQUIFERA	DESCRIZIONE DEI TERRENI ATTRAVERSATI	POCKET PENETR. (Kg/cm²)	PROFONDITÀ (m dai p.c.)	N Z1 = K9/cm ²
								3.60 m K=5.4x10 ⁻⁴ 8.15 m K=2.0x10 ⁻⁴	3 4 5 6 7		L.s.	Sabbia grossolana con ghiaia fine con limo e rari ciottoli 2.8 Sabbia limosa con ghiaia fine Ciottoli, ghiaia da media a fine in matrice limoso-sabbiosa Ghiaia da grossolana a medio-fine (gradata) in matrice sabbioso-limosa con rari ciottoli di ß 4-5 cm Limo argilloso grigio-azzurro con bassissima percentuale di ghiaia fine Ghiaia da media a fine con limo argilloso grigio-azzurro (40%) 8.3 Substrato: blocchi calcarei, Flysch L.S. = 5.00 m sotto il p.c.			FIG. 8

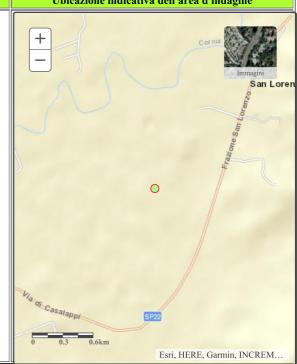
	Committente CIGRI - Venturina (LI) Progetto Cornia ricarica Cantiere Sondaggio S4 Data inizio perforazione 25/01/1993 Data fine perforazione 25/01/1993												Tipo di sondaggio			
DEL FORO (mm	QUOTA ASSOLUTA	PROFONDITÁ	SISTEMAZIONE FINALE DEL FORO		ATOUD	RE	DEL	ERO	PERMEABILITÁ (carico costante) K in m/s	ROFOND	LITOLOGIA	ACQUIFERA	DESCRIZIONE DEI TERRENI ATTRAVERSATI	POCKET PENETR	PROFONDITÀ	™ Z _t = Kg/cm ²
<u>8</u> 820			10 E			10 3	0 50	70 90	2.89 m K=1.0x10 ⁻⁴	1 2 3		L.S.	Ciottoli in matrice di ghiaia fine e sabbia -ALVEO RIOPOPOLO0.8 Sabbia grossolana con ciottoli ø≃4-5 cm -1.7 Ghiaia da grossolana a fine (gradata) con ciottoli, in matrice sabbiosa e poco limo -3.5 Ghiaia gradata in matrice limoso-sabbiosa, frequenti ciottoli	نم		
									5.85 m K=1.3x10 ⁻³	6			-5.2 Limo argilloso debolmente sabbioso giallo ocra -5.5 Ghiaia gradata in matrice limoso-sabbiosa -6.1 Substrato: blocchi calcarei, Flysch -6.5			
- Commented and the Commented										9			L.S. = 2.04 m sotto il p.c.			
										11						
										13						FIG. 11

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Ubicazione indicativa dell'area d'indagine

Codice: 190496 Regione: TOSCANA Provincia: LIVORNO Comune: SUVERETO Tipologia: PERFORAZIONE Opera: POZZO PER ACQUA Profondità (m): 43,00 Quota pc slm (m): 28,00 Anno realizzazione: 1989 Numero diametri: 1 Presenza acqua: SI


Portata massima (l/s): 10,000 Portata esercizio (l/s): 10,000

Numero falde: 0 Numero filtri: 3 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): NO Numero strati: 11

Longitudine WGS84 (dd): 10,697111 **Latitudine WGS84 (dd):** 43,033731 **Longitudine WGS84 (dms):** 10° 41' 49.60" E **Latitudine WGS84 (dms):** 43° 02' 01.43" N

(*)Indica la presenza di un professionista nella

compilazione della stratigrafia

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	0,00	43,00	43,00	500

POSIZIONE FILTRI

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	14,00	16,00	2,00	273
2	22,00	26,00	4,00	273
3	28,00	35,00	7,00	273

MISURE PIEZOMETRICHE

Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
apr/1989	12,00	13,80	1,80	10,000

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	1,50	1,50		TERRENO VEGETALE
2	1,50	10,00	8,50		TERRA ARGILLOSA DURA
3	10,00	13,00	3,00		SABBIONACCIO IMPASTATA CON ARGILLA
4	13,00	14,00	1,00		SABBIONACCIO CON PICCOLA INFILTRAZIONE DI ACQUA
5	14,00	16,00	2,00		GHIAIA CON POCA ACQUA
6	16,00	22,00	6,00		GHIAIA IMPASTATA
7	22,00	26,00	4,00		GHIAIONE CON ACQUA
8	26,00	28,00	2,00		ARGILLA
9	28,00	35,00	7,00		GHIAIONE CON ACQUA
10	35,00	40,00	5,00		GHIAIA IMPASTATA DI ARGILLA
11	40,00	43,00	3,00		GALESTRO

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Codice: 190486 Regione: TOSCANA Provincia: LIVORNO Comune: SUVERETO Tipologia: PERFORAZIONE

Opera: POZZO IDROPOTABILE (ACQUEDOTTISTICO)

Profondità (m): 60,00 Quota pc slm (m): 28,50 Anno realizzazione: 1990 Numero diametri: 1
Presenza acqua: SI
Portata massima (l/s): 14,000
Portata esercizio (l/s): 2,500

Numero falde: 3 Numero filtri: 2 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): NO

Numero strati: 17 Longitudine WGS84 (dd): 10,687389 **Latitudine WGS84 (dd):** 43,039000 Longitudine WGS84 (dms): 10° 41' 14.61" E Latitudine WGS84 (dms): 43° 02' 20.41" N

(*)Indica la presenza di un professionista nella

compilazione della stratigrafia

Ubicazione indicativa dell'area d'indagine

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	0,00	60,00	60,00	500

FALDE ACQUIFERE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)
1	16,00	20,00	4,00
2	25,00	29,00	4,00
3	35,00	48,00	13,00

POSIZIONE FILTRI

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	20,00	23,00	3,00	ND
2	36,00	48,00	12,00	ND

MISURE PIEZOMETRICHE

Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
mag/1990	16,00	16,00	0,00	2,500

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	1,00	1,00	0 0	TERRENO VEGETALE
2	1,00	8,00	7,00		GHIAIONE CON LIMO
3	8,00	11,00	3,00		GHIAIA CON LIMO ASCIUTTA
4	11,00	14,00	3,00		GHIAIA
5	14,00	16,00	2,00		ARGILLA GIALLASTRA
6	16,00	20,00	4,00		GHIAIA CON MATRICE
7	20,00	22,00	2,00		GHIAIA
8	22,00	25,00	3,00		GHIAIA LIMOSA
9	25,00	29,00	4,00		GHIAIA
10	29,00	35,00	6,00		ARGILLA ROSSA
11	35,00	38,00	3,00		CONGLOMERATO
12	38,00	42,00	4,00		GHIAIA FINE ALTERNATE A LIVELLI ARENACEI
13	42,00	45,00	3,00		CONGLOMERATO
14	45,00	46,50	1,50		ARGILLA GIALLA
15	46,50	48,00	1,50		CONGLOMERATO GROSSOLANO
16	48,00	58,00	10,00		ARGILLA GIALLA COMPATTA
17	58,00	60,00	2,00		ARGILLA ROSSA

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

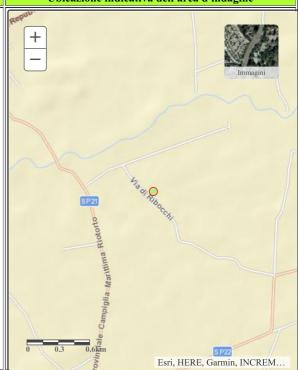
Dati generali

Ubicazione indicativa dell'area d'indagine

Codice: 189845 Regione: TOSCANA Provincia: LIVORNO Comune: SUVERETO Tipologia: PERFORAZIONE

Opera: POZZO IDROPOTABILE (ACQUEDOTTISTICO)

Profondità (m): 58,00 Quota pc slm (m): 22,00 Anno realizzazione: 1991 Numero diametri: 1 Presenza acqua: SI


Portata massima (l/s): 16,670 Portata esercizio (l/s): ND

Numero falde: 0 Numero filtri: 2 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): NO Numero strati: 10

Longitudine WGS84 (dd): 10,661000 Latitudine WGS84 (dd): 43,031219 Longitudine WGS84 (dms): 10° 39' 39.60" E Latitudine WGS84 (dms): 43° 01' 52.40" N

(*)Indica la presenza di un professionista nella

compilazione della stratigrafia

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	0,00	58,00	58,00	300

POSIZIONE FILTRI

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	31,00	40,00	9,00	ND
2	42,00	56,00	14,00	ND

MISURE PIEZOMETRICHE

Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
ott/1991	19,20	20,00	0,80	15,000

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	1,00	1,00		TERRENO VEGETALE
2	1,00	5,00	4,00		ARGILLA SCURA
3	5,00	10,00	5,00		ARGILLA IMPASTATA ASCIUTTA
4	10,00	19,00	9,00		ARGILLA GIALLA SABBIOSA
5	19,00	21,00	2,00		GHIAIA CON POCHISSIMA ACQUA
6	21,00	30,00	9,00		ARGILLA GIALLA COMPATTA
7	30,00	40,00	10,00		GHIAIA CON ACQUA
8	40,00	42,00	2,00		ARGILLA AZZURRA
9	42,00	56,00	14,00		GHIAIA CON ACQUA
10	56,00	58,00	2,00		GHIAIA IMPASTATA CON ARGILLA

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

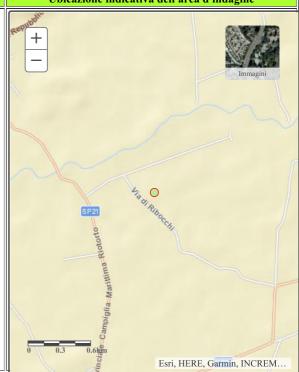
Dati generali

Ubicazione indicativa dell'area d'indagine

Codice: 189847 Regione: TOSCANA Provincia: LIVORNO Comune: SUVERETO Tipologia: PERFORAZIONE

Opera: POZZO IDROPOTABILE (ACQUEDOTTISTICO)

Profondità (m): 58,00
Quota pc slm (m): 22,00
Anno realizzazione: 1991
Numero diametri: 1
Presenza acqua: SI
Portata massima (l/s): 16,67


Portata massima (l/s): 16,670 Portata esercizio (l/s): ND

Numero falde: 0 Numero filtri: 2 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): NO Numero strati: 11

Longitudine WGS84 (dd): 10,661000 Latitudine WGS84 (dd): 43,032050 Longitudine WGS84 (dms): 10° 39' 39.60" E Latitudine WGS84 (dms): 43° 01' 55.38" N

(*)Indica la presenza di un professionista nella

compilazione della stratigrafia

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
l	0,00	58,00	58,00	300

POSIZIONE FILTRI

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	31,00	40,00	9,00	ND
2	42,00	56,00	14,00	ND

MISURE PIEZOMETRICHE

Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
dic/1991	19,50	23,00	3,50	15,000

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	1,00	1,00		TERRENO VEGETALE
2	1,00	5,00	4,00		ARGILLA SCURA DURA
3	5,00	11,00	6,00		GHIAIA IMPASTATA ASCIUTTA
4	11,00	20,00	9,00		ARGILLA SABBIOSA SCURA
5	20,00	22,00	2,00		GHIAIA CON POCHISIMA ACQUA
6	22,00	28,00	6,00		ARGILLA SCURA COMPATTA
7	28,00	40,00	12,00		GHIAIA CON ACQUA
8	40,00	41,00	1,00		ARGILLA AZZURRA
9	41,00	43,00	2,00		ARGILLA ROSSA SABBIOSA
10	43,00	56,00	13,00		GHIAIA CON ACQUA
11	56,00	58,00	2,00		GHIAIA IMPASTATA CON ARGILLA ROSSA

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

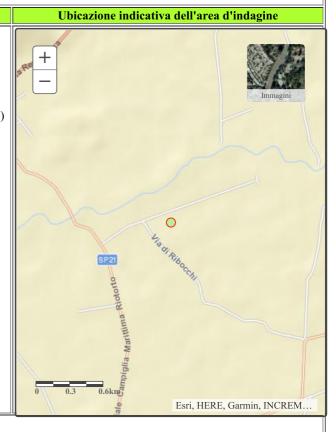
Dati generali

Codice: 189864 Regione: TOSCANA Provincia: LIVORNO Comune: SUVERETO Tipologia: PERFORAZIONE

Opera: POZZO IDROPOTABILE (ACQUEDOTTISTICO)

Profondità (m): 61,00 **Quota pc slm (m):** 22,00 Anno realizzazione: 1991 Numero diametri: 1 Presenza acqua: SI

Portata massima (l/s): ND Portata esercizio (l/s): ND


Numero falde: 0 Numero filtri: 3 Numero piezometrie: 0 Stratigrafia: SI Certificazione(*): NO Numero strati: 10

Longitudine WGS84 (dd): 10,660450 **Latitudine WGS84 (dd):** 43,033439

Longitudine WGS84 (dms): 10° 39' 37.63" E **Latitudine WGS84 (dms):** 43° 02' 00.38" N

(*)Indica la presenza di un professionista nella

compilazione della stratigrafia

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	0,00	61,00	61,00	300

POSIZIONE FILTRI

Pro	ogr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	30	0,00	40,00	10,00	ND
2	45	5,00	58,00	13,00	ND
3	53	3,00	57,00	4,00	ND

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	1,00	1,00		TERRENO VEGETALE
2	1,00	6,00	5,00		ARGILLA SCURA
3	6,00	15,00	9,00		GHIAIA IMPASTATA ASCIUTTA
4	15,00	22,00	7,00		ARGILLA ROSSA CON STRATI DI GHIAIA MISTA
5	22,00	30,00	8,00		ARGILLA SCURA COMPATTA
6	30,00	40,00	10,00		GHIAIA CON ACQUA
7	40,00	42,00	2,00		ARGILLA ROSSASTRA
8	42,00	45,00	3,00		ARGILLA AZZURRA DURA
9	45,00	58,00	13,00		GHIAIA CON ACQUA
10	58,00	61,00	3,00		GHIAIA IMPASTATA CON ARGILLA ROSSA

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Ubicazione indicativa dell'area d'indagine


Codice: 190483 Regione: TOSCANA Provincia: LIVORNO
Comune: SUVERETO
Tipologia: PERFORAZIONE
Opera: POZZO PER ACQUA Profondità (m): 71,00 Quota pc slm (m): 22,00 Anno realizzazione: 1989 Numero diametri: 2 Presenza acqua: SI
Portata massima (l/s): 12,000

Portata esercizio (l/s): 10,000

Numero filtri: 3 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): NO Numero strati: 16

Longitudine WGS84 (dd): 10,660169 Latitudine WGS84 (dd): 43,035111 Longitudine WGS84 (dms): 10° 39' 36.62" E Latitudine WGS84 (dms): 43° 02' 06.40" N

(*)Indica la presenza di un professionista nella compilazione della stratigrafia

DIAMETRI PERFORAZIONE

	Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1		0,00	56,00	56,00	500
2		56,00	71,00	15,00	400

FALDE ACQUIFERE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)
1	41,00	46,00	5,00
2	51,00	56,00	5,00
3	61,00	66,00	5,00

POSIZIONE FILTRI

	Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1		41,00	46,00	5,00	250
2	2	51,00	56,00	5,00	250
3	3	61,00	66,00	5,00	250

MISURE PIEZOMETRICHE

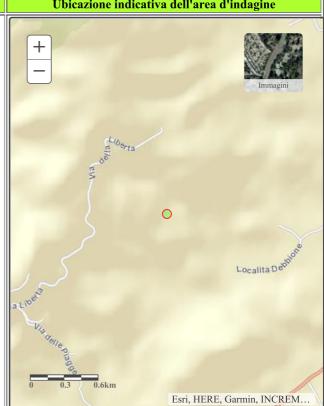
Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
mar/1989	20,00	21,50	1,50	10,000

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	1,50	1,50		TERRENO VEGETALE
2	1,50	6,00	4,50		ARGILLA SABBIOSA
3	6,00	9,00	3,00		ARGILLA SCURA COMPATTA
4	9,00	12,00	3,00		GHIAIA IMPASTATA ASCIUTTA
5	12,00	16,00	4,00		ARGILLA GIALLA GRANELLOSA DURA
6	16,00	19,00	3,00		ARGILLA GIALLA SABBIOSA
7	19,00	24,00	5,00		SABBIONE COMPATTO ARGILLOSO
8	24,00	25,00	1,00		GHIAIA CON ACQUA
9	25,00	34,50	9,50		ARGILLA ROSSASTRA MISTA CON CIOTTOLI
10	34,50	36,00	1,50		GHIAIA CON ACQUA
11	36,00	37,00	1,00		ARGILLA ROSSA
12	37,00	42,00	5,00		GHIAIA CON ACQUA
13	42,00	43,00	1,00		ARGILLA AZZURRA
14	43,00	65,00	22,00		GHIAIA MOLTO GROSSA CON ACQUA
15	65,00	69,00	4,00		GHIAIA IMPASTATA CON ARGILLA ROSSA
16	69,00	71,00	2,00		ARGILLA ROSSA DURA

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Ubicazione indicativa dell'area d'indagine


Codice: 190501 Regione: TOSCANA Provincia: LIVORNO Comune: SUVERETO Tipologia: PERFORAZIONE Opera: POZZO PER ACQUA Profondità (m): 52,00 **Quota pc slm (m):** 173,00 Anno realizzazione: 2000 Numero diametri: 1 Presenza acqua: SI

Portata massima (l/s): 0,900 Portata esercizio (l/s): 0,670

Numero falde: 1 Numero filtri: 1 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): NO Numero strati: 1

Longitudine WGS84 (dd): 10,639889 **Latitudine WGS84 (dd):** 43,067050 **Longitudine WGS84 (dms):** 10° 38′ 23.60″ E **Latitudine WGS84 (dms):** 43° 04' 01.39" N

(*)Indica la presenza di un professionista nella compilazione della stratigrafia

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	0,00	52,00	52,00	220

FALDE ACQUIFERE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)
1	45,00	48,00	3,00

POSIZIONE FILTRI

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	45,00	48,00	3,00	250

MISURE PIEZOMETRICHE

Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
dic/2000	24,00	35,00	11,00	0,670

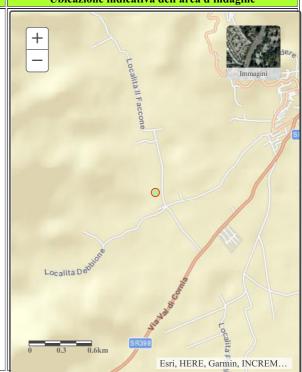
Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	52,00	52,00		DESCRIZIONE LITOLOGICA ORIGINALE NON LEGGIBILE

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Ubicazione indicativa dell'area d'indagine

Codice: 190485
Regione: TOSCANA
Provincia: LIVORNO
Comune: SUVERETO
Tipologia: PERFORAZIONE
Opera: POZZO PER ACQUA
Profondità (m): 33,00
Quota pc slm (m): 46,00
Anno realizzazione: 1998
Numero diametri: 1
Presenza acqua: SI
Portata massima (l/s): 5,000


Portata massima (l/s): 5,000 Portata esercizio (l/s): ND

Numero falde: 1 Numero filtri: 1 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): NO Numero strati: 1

Longitudine WGS84 (dd): 10,660719 Latitudine WGS84 (dd): 43,069561 Longitudine WGS84 (dms): 10° 39' 38.59" E Latitudine WGS84 (dms): 43° 04' 10.43" N

(*)Indica la presenza di un professionista nella

compilazione della stratigrafia

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	0,00	33,00	33,00	500

FALDE ACQUIFERE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)
1	22,00	32,00	10,00

POSIZIONE FILTRI

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	25,00	30,00	5,00	200

MISURE PIEZOMETRICHE

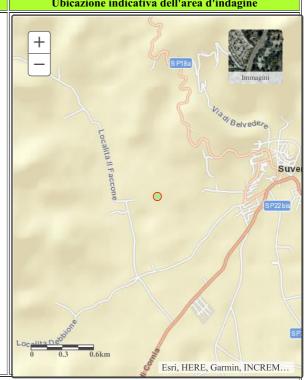
Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
mag/1998	0,00	16,00	16,00	5,000

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	33,00	33,00		DESCRIZIONE LITOLOGICA ORIGINALE NON LEGGIBILE

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Ubicazione indicativa dell'area d'indagine


Codice: 154604 Regione: TOSCANA Provincia: LIVORNO Comune: SUVERETO Tipologia: PERFORAZIONE Opera: POZZO PER ACQUA Profondità (m): 50,00 **Quota pc slm (m):** 71,00 Anno realizzazione: 2003 Numero diametri: 2 Presenza acqua: SI Portata massima (l/s): ND Portata esercizio (l/s): 0,500

Numero falde: 1 Numero filtri: 1 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): SI Numero strati: 4

Longitudine WGS84 (dd): 10,664331 **Latitudine WGS84 (dd):** 43,075389 Longitudine WGS84 (dms): 10° 39′ 51.60″ E **Latitudine WGS84 (dms):** 43° 04' 31.41" N

(*)Indica la presenza di un professionista nella

compilazione della stratigrafia

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	0,00	50,00	50,00	220

FALDE ACQUIFERE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)
1	25,00	49,00	24,00

POSIZIONE FILTRI

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	33,00	48,00	15,00	140

MISURE PIEZOMETRICHE

Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
mag/2003	13,60	24,80	11,20	0,500

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	5,00	5,00	l	TERRENO DI ALTERAZIONE COSTITUITO DA ARGILLITI ED INCLUSIONI CALCAREE
2	5,00	24,00	19,00		ARGILLITI CON INTERCALAZIONI DI BANCATE CALCAREE
3	24,00	49,00	25,00		ALTERNANZA DI BANCATE CALCAREE CON ARGILLITI
4	49,00	50,00	1,00		ARGILLITI

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Codice: 190490 Regione: TOSCANA Provincia: LIVORNO Comune: SUVERETO Tipologia: PERFORAZIONE

Opera: POZZO PER ACQUA Profondità (m): 15,18 **Quota pc slm (m):** 85,00 Anno realizzazione: 1991 Numero diametri: 0 Presenza acqua: NO Portata massima (l/s): ND Portata esercizio (l/s): ND

Numero falde: 0 Numero filtri: 0 Numero piezometrie: 0 Stratigrafia: SI Certificazione(*): NO Numero strati: 4

Longitudine WGS84 (dd): 10,670450 **Latitudine WGS84 (dd):** 43,077339 **Longitudine WGS84 (dms):** 10° 40′ 13.62″ E **Latitudine WGS84 (dms):** 43° 04′ 38.42″ N

(*)Indica la presenza di un professionista nella

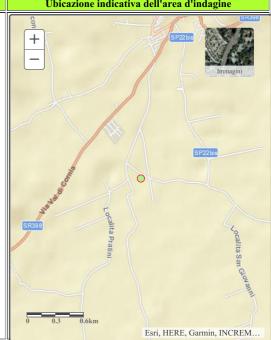
compilazione della stratigrafia

Ubicazione indicativa dell'area d'indagine

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	0,20	0,20		TERRENO VEGETALE
2	0,20	2,40	2,20		CIOTTOLI DI MONTE CON ARGILLA
3	2,40	5,15	2,75		ARGILLA CON ARGILLOSCISTI
4	5,15	15,18	10,03		CAPPELLO PIEDE DI NMONTE

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali


Ubicazione indicativa dell'area d'indagine

Codice: 190499 Regione: TOSCANA Provincia: LIVORNO Comune: SUVERETO Tipologia: PERFORAZIONE Opera: POZZO PER ACQUA Profondità (m): 54,00 Quota pc slm (m): 32,00 Anno realizzazione: 1996 Numero diametri: 2 Presenza acqua: SI Portata massima (l/s): ND Portata esercizio (l/s): ND Numero falde: 5

Numero filtri: 1 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): SI Numero strati: 3

Longitudine WGS84 (dd): 10,673219 **Latitudine WGS84 (dd):** 43,060950 Longitudine WGS84 (dms): 10° 40′ 23.59″ E Latitudine WGS84 (dms): 43° 03' 39.42" N

(*)Indica la presenza di un professionista nella compilazione della stratigrafia

DIAMETRI PERFORAZIONE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	0,00	34,00	34,00	125
2	34,00	54,00	20,00	110

FALDE ACQUIFERE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)
1	6,00	7,00	1,00
2	24,00	25,50	1,50
3	27,00	28,00	1,00
4	33,00	34,50	1,50
5	43,00	45,00	2,00

POSIZIONE FILTRI

	Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
I	1	25,00	32,00	7,00	ND

MISURE PIEZOMETRICHE

Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
dic/1996	5,30	20,10	14,80	0,750

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	0,50	0,50		TERRENO VEGETALE DI NATURA ESSENZIALMENTE LIMO ARGILLOSA CON CLASTI ETEROMETRICI, OSSIDATI DI ARENARIA MACIGNO E DI ARGILLOSCISTTI FOGLIETTATI
2	0,50	6,00	5,50		LIVELLI ARENACEI ALTERNATI A LIVELLI ARGILLOSCISTOSI, FOGLIETTATI, DI COLORE MARRONE TALVOLTA FORTEMENTE OSSIDATI
3	6,00	54,00	48,00		ARENARIA "MACIGNO" DI COLORE GRIGIO A GRANA MEDIA CON ALTERNATI SPORADICI LIVELLI ARGILLOSCISTOSI MARRONI, CALCAREI PREVALENTEMENTE GRIGIO SCURI E CALCAREO MARNOSI GRIGI. SONO PRESENTI FREQUENTI

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Ubicazione indicativa dell'area d'indagine

Codice: 190488 Regione: TOSCANA Provincia: LIVORNO Comune: SUVERETO Tipologia: PERFORAZIONE Opera: POZZO PER ACQUA Profondità (m): 53,00 Quota pc slm (m): 29,00 Anno realizzazione: 1989 Numero diametri: 1 Presenza acqua: SI

Portata massima (l/s): 2,000 Portata esercizio (l/s): 1,000

Numero falde: 2 Numero filtri: 1 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): NO Numero strati: 10

Longitudine WGS84 (dd): 10,693219 **Latitudine WGS84 (dd):** 43,051500 Longitudine WGS84 (dms): 10° 41′ 35.60″ E **Latitudine WGS84 (dms):** 43° 03' 05.40" N

(*)Indica la presenza di un professionista nella

compilazione della stratigrafia

DIAMETRI PERFORAZIONE

L					
	Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
[]	Į.	0,00	53,00	53,00	530

FALDE ACQUIFERE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)
1	20,00	22,00	2,00
2	32,00	34,00	2,00

POSIZIONE FILTRI

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	19,00	34,00	15,00	230

MISURE PIEZOMETRICHE

Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
mar/1989	15,65	16,73	1,08	5,000

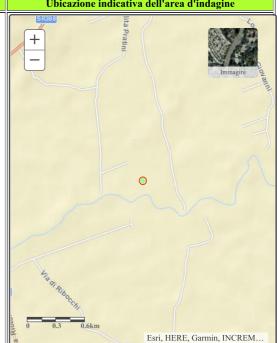
Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	1,00	1,00		TERRENO VEGETALE
2	1,00	10,00	9,00		GHIAIA IMPASTATA ASCIUTTA
3	10,00	16,00	6,00		ARGILLA ROSSASTRA
4	16,00	18,00	2,00		GHIAIA ASCIUTTA IMPASTATA
5	18,00	22,00	4,00		GHIAIONE CON ACQUA
6	22,00	24,00	2,00		ARGILLA GIALLA
7	24,00	34,00	10,00		GHIAIA CONGLOMERATA
8	34,00	37,00	3,00		ARGILLA AZZURRA DURA
9	37,00	49,00	12,00		ARGILLA COMPATTA DURA
10	49,00	53,00	4,00		ARGILLA SCURA DURA GHIAIOSA

Archivio nazionale delle indagini nel sottosuolo (Legge 464/1984)

Dati generali

Ubicazione indicativa dell'area d'indagine

Codice: 190493 Regione: TOSCANA Provincia: LIVORNO Comune: SUVERETO Tipologia: PERFORAZIONE Opera: POZZO PER ACQUA Profondità (m): 57,00 Quota pc slm (m): 24,00 Anno realizzazione: 1991 Numero diametri: 1 Presenza acqua: SI


Portata massima (l/s): 24,000 Portata esercizio (l/s): 18,000

Numero falde: 3 Numero filtri: 1 Numero piezometrie: 1 Stratigrafia: SI Certificazione(*): SI Numero strati: 10

Longitudine WGS84 (dd): 10,671561 Latitudine WGS84 (dd): 43,040939 Longitudine WGS84 (dms): 10° 40' 17.62" E Latitudine WGS84 (dms): 43° 02' 27.38" N

(*)Indica la presenza di un professionista nella

compilazione della stratigrafia

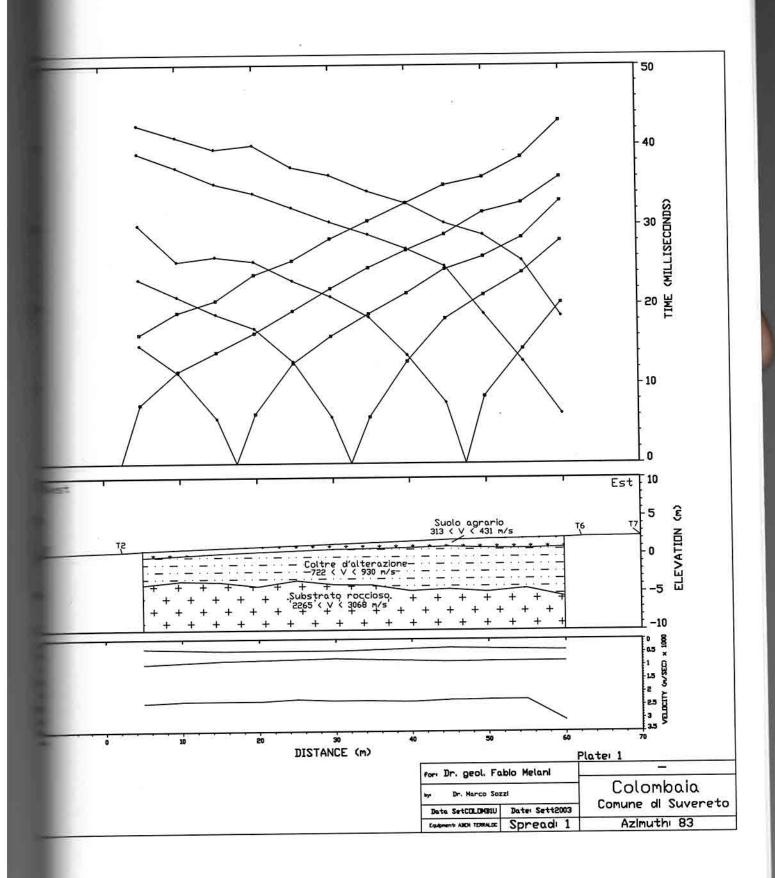
DIAMETRI PERFORAZIONE

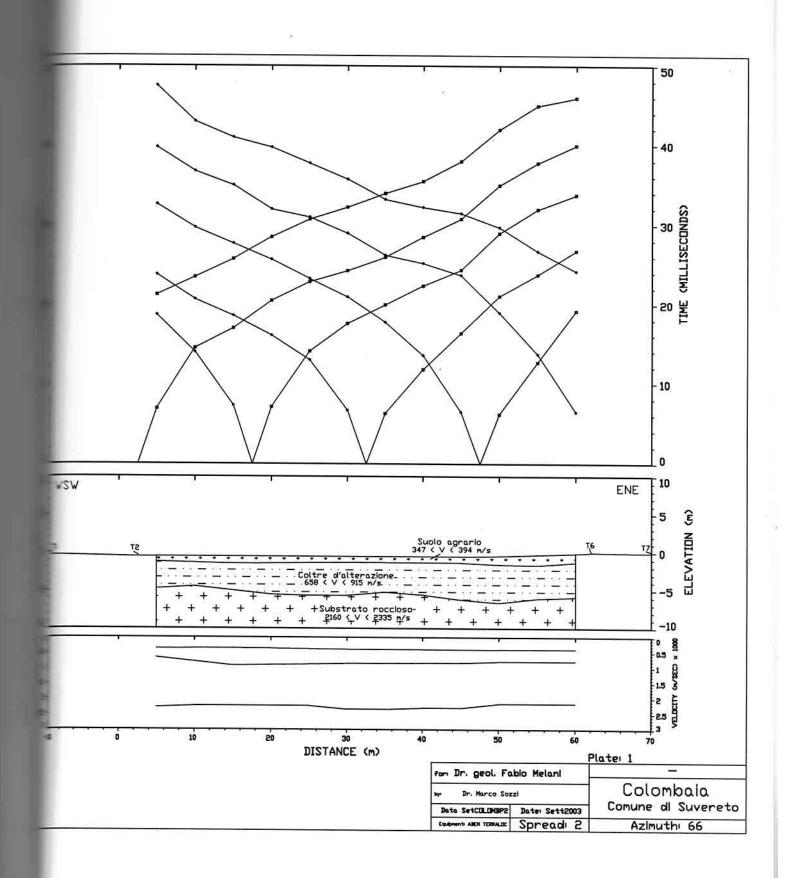
Prog	r Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	0,00	57,00	57,00	500

FALDE ACQUIFERE

Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)
1	18,00	30,00	12,00
2	31,00	46,00	15,00
3	48,00	50,00	2,00

POSIZIONE FILTRI


Progr	Da profondità (m)	A profondità (m)	Lunghezza (m)	Diametro (mm)
1	31,00	50,00	19,00	200


MISURE PIEZOMETRICHE

Data rilevamento	Livello statico (m)	Livello dinamico (m)	Abbassamento (m)	Portata (l/s)
mag/1991	13,00	15,00	2,00	18,000

Progr	Da profondità (m)	A profondità (m)	Spessore (m)	Età geologica	Descrizione litologica
1	0,00	3,50	3,50		TERRENO VEGETALE
2	3,50	12,00	8,50		ARGILLA CON PICCOLE INTERCALAZIONI DI GHIAIA
3	12,00	16,00	4,00		GHIAIA
4	16,00	18,00	2,00		ARGILLA
5	18,00	30,00	12,00		GHIAIA
6	30,00	31,00	1,00		ARGILLA
7	31,00	46,00	15,00		GHIAIA
8	46,00	48,00	2,00		ARGILLA
9	48,00	50,00	2,00		GHIAIA
10	50,00	57,00	7,00		ARGILLA

DATI SISMICI

12

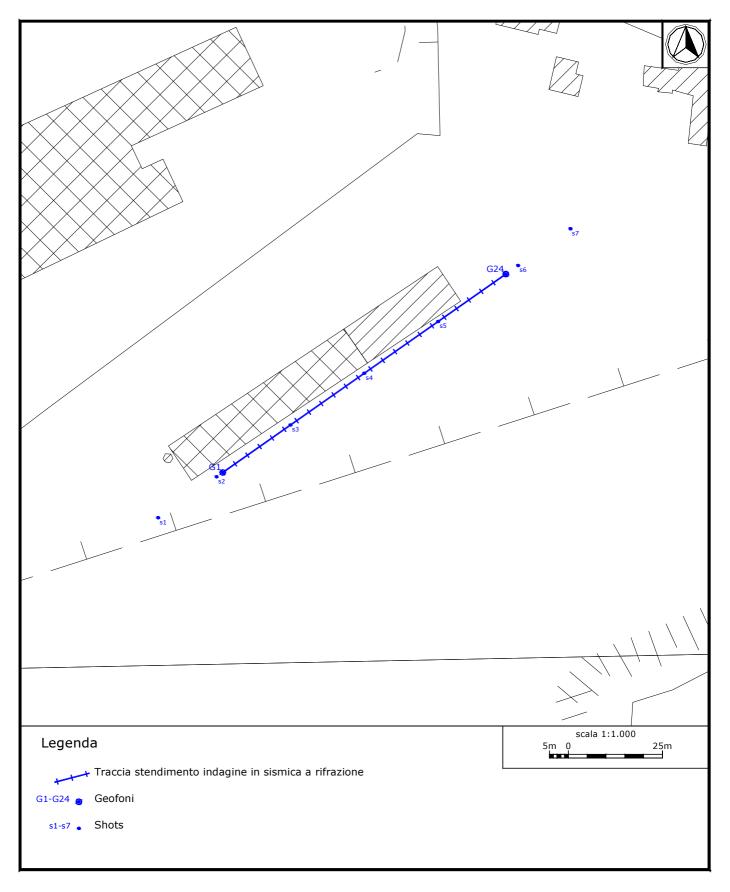


Figura 2. Particolare stendimento sismica a rifrazione in onde Sh.

ANALISI SISMICA A RIFRAZIONE

Suvereto - Rifrazione onde Sh

POSIZIONE DEGLI SPARI

Ascissa [m]	Quota [m]	Nome File
-19.00	0.00	s1.dta
0.00	0.16	s2.dta
24.00	0.17	s3.dta
48.00	0.22	s4.dta
72.00	0.45	s5.dta
98.00	0.21	s6.dta
115.00	0.21	s7.dta

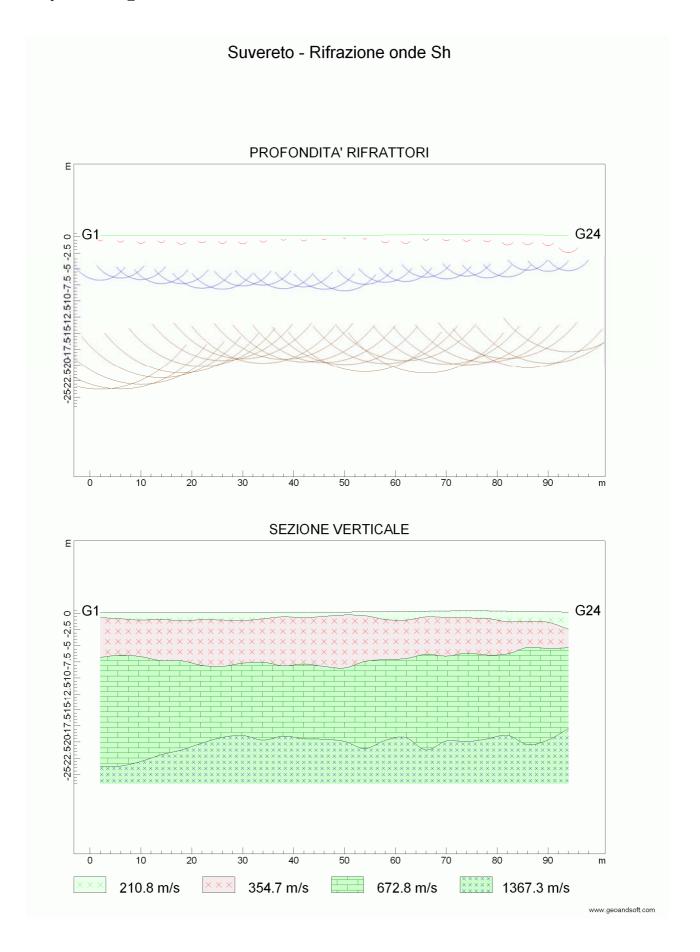
POSIZIONE DEI GEOFONI E PRIMI ARRIVI

N.	Ascissa [m]	Quota [m]	FBP da -19	FBP da 0	FBP da 24	FBP da 48	FBP da 72	FBP da 98	FBP da 115
			[ms]	[ms]	[ms]	[ms]	[ms]	[ms]	[ms]
1	2.00	0.16	81.77	12.35	71.24	109.33	146.38	149.50	165.50
2	6.00	0.16	88.66	25.61	61.36	103.35	142.61	145.90	162.20
3	10.00	0.16	92.82	37.96	48.88	98.28	139.49	142.70	159.60
4	14.00	0.16	98.80	47.58	32.50	92.43	135.33	139.50	155.90
5	18.00	0.17	105.17	60.45	18.72	87.36	132.08	134.90	151.80
6	22.00	0.17	110.37	69.55	3.90	81.25	127.14	131.20	148.10
7	26.00	0.18	115.18	77.74	8.71	74.49	123.89	127.10	145.00
8	30.00	0.19	121.55	81.38	21.84	67.73	119.86	123.50	140.80
9	34.00	0.20	126.88	85.54	39.26	54.34	115.70	122.10	138.10
10	38.00	0.21	132.86	89.57	55.25	40.69	109.72	118.90	136.20
11	42.00	0.22	137.41	95.68	70.46	30.55	103.35	118.00	134.00
12	46.00	0.22	142.22	101.53	79.56	12.74	97.89	115.20	130.80
13	50.00	0.24	145.86	108.81	88.66	8.69	88.27	111.10	129.00
14	54.00	0.27	148.20	114.79	100.62	33.41	77.27	106.10	126.80
15	58.00	0.29	150.54	120.77	106.99	52.58	62.64	100.10	123.50
16	62.00	0.33	154.05	124.41	112.06	59.90	52.13	91.40	119.00
17	66.00	0.37	156.13	130.26	118.04	65.78	37.04	86.40	112.80
18	70.00	0.41	158.86	132.60	122.07	70.85	17.38	76.80	108.80
19	74.00	0.44	160.55	136.24	128.05	79.56	19.20	71.50	102.40
20	78.00	0.42	163.02	138.58	133.12	84.63	31.55	60.80	98.30
21	82.00	0.37	165.23	142.22	136.76	90.87	42.07	54.90	89.60
22	86.00	0.32	167.44	144.95	140.40	95.55	51.67	43.00	81.40
23	90.00	0.28	171.08	148.20	143.52	99.06	55.77	30.20	74.10
24	94.00	0.23	174.46	151.84	146.38	104.65	61.23	18.70	68.60

DISTANZA DEI RIFRATTORI DAI GEOFONI

N. Geof.	Dist. Rifr. 1 [m]	Dist. Rifr. 2 [m]	Dist. Rifr. 3 [m]
1	0.8	7.0	23.9
2	1.0	6.6	23.9
3	1.2	6.8	23.2
4	1.0	7.5	22.1
5	1.3	7.5	21.4
6	1.1	8.2	20.3
7	1.2	8.4	19.5
8	1.3	7.9	19.2
9	1.0	7.7	19.9
10	0.7	8.3	19.3
11	0.9	8.0	19.7
12	0.6	8.4	19.8
13	0.5	8.7	20.1
14	0.6	7.7	21.3
15	1.2	7.4	20.0
16	1.3	7.3	19.6
17	0.9	6.7	21.6
18	1.0	7.0	20.2
19	1.1	6.6	20.4
20	1.2	6.8	19.9
21	1.6	6.6	19.3
22	1.5	5.6	20.7
23	1.6	5.7	20.0
24	2.7	5.5	18.1

Rif.: j11.066.03.29_svr.doc


VELOCITA' DEGLI STRATI

N. Strato	Velocità [m/s]
1	210.8
2	354.7
3	672.8
4	1367.3

SPESSORI DEGLI STRATI SULLE VERTICALI SOTTO I GEOFONI (fino a 30m) E VALORI CORRISPONDENTE DI VS30

N. Geof.	Spessore strato 1 [m]	Spessore strato 2 [m]	Spessore strato 3 [m]	Spessore strato 4 [m]	VS30 [m/s]
1	0.8	6.2	16.9	6.1	590
2	1	5.6	17.3	6.1	592
3	1.2	5.6	16.4	6.8	590
4	1	6.5	14.6	7.9	594
5	1.3	6.2	13.9	8.6	593
6	1.1	7.1	12.1	9.7	596
7	1.2	7.2	11.1	10.5	598
8	1.3	6.6	11.3	10.8	606
9	1	6.7	12.2	10.1	610
10	0.7	7.6	11	10.7	613
11	0.9	7.1	11.7	10.3	610
12	0.6	7.8	11.4	10.2	609
13	0.5	8.2	11.4	9.9	604
14	0.6	7.1	13.6	8.7	607
15	1.2	6.2	12.6	10	610
16	1.3	6	12.3	10.4	613
17	0.9	5.8	14.9	8.4	613
18	1	6	13.2	9.8	619
19	1.1	5.5	13.8	9.6	622
20	1.2	5.6	13.1	10.1	621
21	1.6	5	12.7	10.7	620
22	1.5	4.1	15.1	9.3	626
23	1.6	4.1	14.3	10	629
24	2.7	2.8	12.6	11.9	623

Rif.: j11.066.03.29_svr.doc

Rif.: j11.066.03.29_svr.doc

4 CONCLUSIONI

La prospezione geofisica eseguita ha permesso di ricavare sia il modello medio di distribuzione della velocità delle onde "S" nel sottosuolo del sito indagato sia il parametro Vs30

La velocità equivalente di propagazione delle Onde di taglio entro i 30 metri di profondità (Vs30) è calcolata con la seguente espressione:

$$Vs30 = \frac{30}{\sum \frac{h_i}{Vs_i}}$$

in cui Vs_i e h_i sono rispettivamente la velocità delle onde di taglio e lo spessore dell'i-esimo strato.

Nella tabella seguente è riportato, per ogni geofono dello stendimento il parametro Vs30, riferito al piano campagna e calcolato sulla relativa verticale.

N Geof.	Vs30 [m/s]	N Geof.	Vs30 [m/s]
1	590	13	604
2	592	14	607
3	590	15	610
4	594	16	613
5	593	17	613
6	596	18	619
7	598	19	622
8	606	20	621
9	610	21	620
10	613	22	626
11	610	23	629
12	609	24	623

Pisa, 20 Aprile 2011

P3 s.n.c.

D2 - - -

Via delle Sette Volte, 21 - 56126 PISA

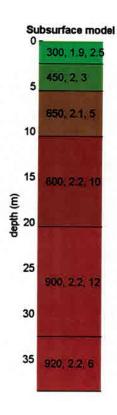
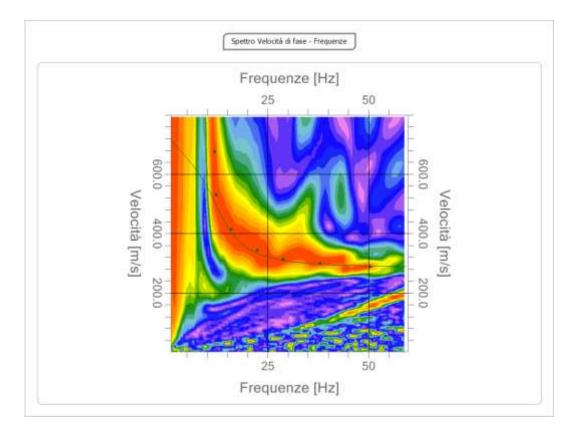


Figura 4: Indagine MASW: Modello sismo stratigrafico

Modello medio


Vs (m/s): 300 450 650 800 900 920 Thickness (m): 2.5, 3.0, 5.0, 10.0, 12.0

Density (gr/cm3) (approximate values): 1.94 2.04 2.13 2.18 2.21 2.21 Shear modulus (MPa) (approximate values): 175 413 899 1394 1787 1872

Analyzing Phase velocities Analysis: Rayleigh Waves

Approximate values for Vp and Poisson Vp (m/s): 624 937 1353 1665 1873 1915 Poisson: 0.35 0.35 0.35 0.35 0.35

Vs30 (m/s): 656

Il parametro *Vs*eq viene calcolato utilizzando una media ponderata dei valori di velocità delle onde di taglio mediante la seguente espressione:

$$V_{S,eq} = \frac{H}{\sum_{i=1}^{N} \frac{h_i}{V_{S,i}}}$$

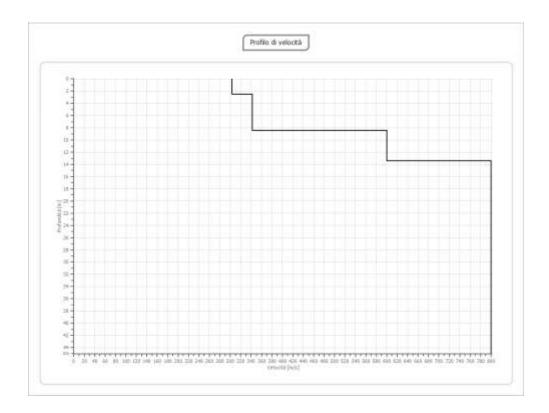
dove

hi = spessore dell'i-esimo strato

VS,i = velocità delle onde di taglio nell'i-esimo strato

N = numero di strati;

H= profondità del substrato, definito come quella formazione costituita da roccia o terreno molto rigido, caratterizzata da VS non inferiore a 800~m/s.


Alla luce dell'indagine svolta si sono ottenuti i seguenti risultati:

Ipotizzando il piano di posa a partire dalla profondità di almeno

0.5 m dal p.c.:

$$Vs,eq[m/sec] (H=12.87 m) = 401.5 m/sec$$

In considerazione delle caratteristiche dell'assetto geologico ed in particolar modo dell'ammasso roccioso che caratterizza l'area d'intervento, possiamo indicare una **categoria di suolo B** ("Rocce tenere e depositi di terreni a grana grossa molto addensati o terreni a grana fina molto consistenti, caratterizzati da un miglioramento delle proprietà meccaniche con la profondità e da valori di velocità equivalente compresi tra 360 m/s e 800 m/s.").

Per quanto riguarda il secondo termine che partecipa alla determinazione del coefficiente di sito, si è assunta la **categoria**